image_classification.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.image_classification.model_list import MODELS
  17. from ...modules.multilabel_classification.model_list import MODELS as ML_MODELS
  18. from ..components import *
  19. from ..results import TopkResult
  20. from ..utils.process_hook import batchable_method
  21. from .base import BasicPredictor
  22. class ClasPredictor(BasicPredictor):
  23. entities = [*MODELS, *ML_MODELS]
  24. _FUNC_MAP = {}
  25. register = FuncRegister(_FUNC_MAP)
  26. def _check_args(self, kwargs):
  27. assert set(kwargs.keys()).issubset(set(["batch_size"]))
  28. return kwargs
  29. def _build_components(self):
  30. ops = {}
  31. ops["ReadImage"] = ReadImage(
  32. format="RGB", batch_size=self.kwargs.get("batch_size", 1)
  33. )
  34. for cfg in self.config["PreProcess"]["transform_ops"]:
  35. tf_key = list(cfg.keys())[0]
  36. func = self._FUNC_MAP.get(tf_key)
  37. args = cfg.get(tf_key, {})
  38. op = func(self, **args) if args else func(self)
  39. ops[tf_key] = op
  40. predictor = ImagePredictor(
  41. model_dir=self.model_dir,
  42. model_prefix=self.MODEL_FILE_PREFIX,
  43. option=self.pp_option,
  44. )
  45. ops["predictor"] = predictor
  46. post_processes = self.config["PostProcess"]
  47. for key in post_processes:
  48. func = self._FUNC_MAP.get(key)
  49. args = post_processes.get(key, {})
  50. op = func(self, **args) if args else func(self)
  51. ops[key] = op
  52. return ops
  53. @register("ResizeImage")
  54. # TODO(gaotingquan): backend & interpolation
  55. def build_resize(
  56. self, resize_short=None, size=None, backend="cv2", interpolation="LINEAR"
  57. ):
  58. assert resize_short or size
  59. if resize_short:
  60. op = ResizeByShort(
  61. target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
  62. )
  63. else:
  64. op = Resize(target_size=size)
  65. return op
  66. @register("CropImage")
  67. def build_crop(self, size=224):
  68. return Crop(crop_size=size)
  69. @register("NormalizeImage")
  70. def build_normalize(
  71. self,
  72. mean=[0.485, 0.456, 0.406],
  73. std=[0.229, 0.224, 0.225],
  74. scale=1 / 255,
  75. order="",
  76. channel_num=3,
  77. ):
  78. assert channel_num == 3
  79. assert order == ""
  80. return Normalize(mean=mean, std=std)
  81. @register("ToCHWImage")
  82. def build_to_chw(self):
  83. return ToCHWImage()
  84. @register("Topk")
  85. def build_topk(self, topk, label_list=None):
  86. return Topk(topk=int(topk), class_ids=label_list)
  87. @register("MultiLabelThreshOutput")
  88. def build_threshoutput(self, threshold, label_list=None):
  89. return MultiLabelThreshOutput(threshold=float(threshold), class_ids=label_list)
  90. def _pack_res(self, single):
  91. keys = ["img_path", "class_ids", "scores"]
  92. if "label_names" in single:
  93. keys.append("label_names")
  94. return TopkResult({key: single[key] for key in keys})