| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...utils.func_register import FuncRegister
- from ...modules.ts_forecast.model_list import MODELS
- from ..components import *
- from ..results import TSResult
- from ..utils.process_hook import batchable_method
- from .base import BasicPredictor
- class TSPredictor(BasicPredictor):
- entities = MODELS
- def _check_args(self, kwargs):
- pass
- def _build_components(self):
- preprocess = self._build_preprocess()
- predictor = TSPPPredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- postprocess = self._build_postprocess()
- return {**preprocess, "predictor": predictor, **postprocess}
- def _build_preprocess(self):
- if not self.config.get("info_params", None):
- raise Exception("info_params is not found in config file")
- ops = {}
- ops["ReadTS"] = ReadTS()
- ops["TSCutOff"] = TSCutOff(self.config["size"])
- if self.config.get("scale", None):
- scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
- if not os.path.exists(scaler_file_path):
- raise Exception(f"Cannot find scaler file: {scaler_file_path}")
- ops["TSNormalize"] = TSNormalize(
- scaler_file_path, self.config["info_params"]
- )
- ops["BuildTSDataset"] = BuildTSDataset(self.config["info_params"])
- if self.config.get("time_feat", None):
- ops["TimeFeature"] = TimeFeature(
- self.config["info_params"],
- self.config["size"],
- self.config["holiday"],
- )
- ops["TStoArray"] = TStoArray(self.config["input_data"])
- return ops
- def _build_postprocess(self):
- if not self.config.get("info_params", None):
- raise Exception("info_params is not found in config file")
- ops = {}
- ops["ArraytoTS"] = ArraytoTS(self.config["info_params"])
- if self.config.get("scale", None):
- scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
- if not os.path.exists(scaler_file_path):
- raise Exception(f"Cannot find scaler file: {scaler_file_path}")
- ops["TSDeNormalize"] = TSDeNormalize(
- scaler_file_path, self.config["info_params"]
- )
- return ops
- @batchable_method
- def _pack_res(self, data):
- return {
- "result": TSResult({"ts_path": data["ts_path"], "forecast": data["pred"]})
- }
|