| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ..base import BaseComponent
- __all__ = ["TableLabelDecode", "TableMasterLabelDecode"]
- class TableLabelDecode(BaseComponent):
- """decode the table model outputs(probs) to character str"""
- ENABLE_BATCH = True
- INPUT_KEYS = ["pred", "ori_img_size"]
- OUTPUT_KEYS = ["bbox", "structure"]
- DEAULT_INPUTS = {"pred": "pred", "ori_img_size": "ori_img_size"}
- DEAULT_OUTPUTS = {"bbox": "bbox", "structure": "structure"}
- def __init__(self, merge_no_span_structure=True, dict_character=[]):
- super().__init__()
- if merge_no_span_structure:
- if "<td></td>" not in dict_character:
- dict_character.append("<td></td>")
- if "<td>" in dict_character:
- dict_character.remove("<td>")
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- self.td_token = ["<td>", "<td", "<td></td>"]
- def add_special_char(self, dict_character):
- """add_special_char"""
- self.beg_str = "sos"
- self.end_str = "eos"
- dict_character = dict_character
- dict_character = [self.beg_str] + dict_character + [self.end_str]
- return dict_character
- def get_ignored_tokens(self):
- """get_ignored_tokens"""
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- """get_beg_end_flag_idx"""
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "unsupported type %s in get_beg_end_flag_idx" % beg_or_end
- return idx
- def apply(self, pred, ori_img_size):
- """apply"""
- bbox_preds, structure_probs = [], []
- for bbox_pred, stru_prob in pred:
- bbox_preds.append(bbox_pred)
- structure_probs.append(stru_prob)
- bbox_preds = np.array(bbox_preds)
- structure_probs = np.array(structure_probs)
- bbox_list, structure_str_list = self.decode(
- structure_probs, bbox_preds, ori_img_size
- )
- structure_str_list = [
- (
- ["<html>", "<body>", "<table>"]
- + structure
- + ["</table>", "</body>", "</html>"]
- )
- for structure in structure_str_list
- ]
- return [
- {"bbox": bbox, "structure": structure}
- for bbox, structure in zip(bbox_list, structure_str_list)
- ]
- def decode(self, structure_probs, bbox_preds, shape_list):
- """convert text-label into text-index."""
- ignored_tokens = self.get_ignored_tokens()
- end_idx = self.dict[self.end_str]
- structure_idx = structure_probs.argmax(axis=2)
- structure_probs = structure_probs.max(axis=2)
- structure_batch_list = []
- bbox_batch_list = []
- batch_size = len(structure_idx)
- for batch_idx in range(batch_size):
- structure_list = []
- bbox_list = []
- score_list = []
- for idx in range(len(structure_idx[batch_idx])):
- char_idx = int(structure_idx[batch_idx][idx])
- if idx > 0 and char_idx == end_idx:
- break
- if char_idx in ignored_tokens:
- continue
- text = self.character[char_idx]
- if text in self.td_token:
- bbox = bbox_preds[batch_idx, idx]
- bbox = self._bbox_decode(bbox, shape_list[batch_idx])
- bbox_list.append(bbox.tolist())
- structure_list.append(text)
- score_list.append(structure_probs[batch_idx, idx])
- structure_batch_list.append([structure_list, float(np.mean(score_list))])
- bbox_batch_list.append(bbox_list)
- return bbox_batch_list, structure_batch_list
- def decode_label(self, batch):
- """convert text-label into text-index."""
- structure_idx = batch[1]
- gt_bbox_list = batch[2]
- shape_list = batch[-1]
- ignored_tokens = self.get_ignored_tokens()
- end_idx = self.dict[self.end_str]
- structure_batch_list = []
- bbox_batch_list = []
- batch_size = len(structure_idx)
- for batch_idx in range(batch_size):
- structure_list = []
- bbox_list = []
- for idx in range(len(structure_idx[batch_idx])):
- char_idx = int(structure_idx[batch_idx][idx])
- if idx > 0 and char_idx == end_idx:
- break
- if char_idx in ignored_tokens:
- continue
- structure_list.append(self.character[char_idx])
- bbox = gt_bbox_list[batch_idx][idx]
- if bbox.sum() != 0:
- bbox = self._bbox_decode(bbox, shape_list[batch_idx])
- bbox_list.append(bbox.tolist())
- structure_batch_list.append(structure_list)
- bbox_batch_list.append(bbox_list)
- return bbox_batch_list, structure_batch_list
- def _bbox_decode(self, bbox, shape):
- w, h = shape[:2]
- bbox[0::2] *= w
- bbox[1::2] *= h
- return bbox
- class TableMasterLabelDecode(TableLabelDecode):
- """decode the table model outputs(probs) to character str"""
- def __init__(
- self,
- character_dict_type="TableMaster",
- box_shape="pad",
- merge_no_span_structure=True,
- ):
- super(TableMasterLabelDecode, self).__init__(
- character_dict_type, merge_no_span_structure
- )
- self.box_shape = box_shape
- assert box_shape in [
- "ori",
- "pad",
- ], "The shape used for box normalization must be ori or pad"
- def add_special_char(self, dict_character):
- """add_special_char"""
- self.beg_str = "<SOS>"
- self.end_str = "<EOS>"
- self.unknown_str = "<UKN>"
- self.pad_str = "<PAD>"
- dict_character = dict_character
- dict_character = dict_character + [
- self.unknown_str,
- self.beg_str,
- self.end_str,
- self.pad_str,
- ]
- return dict_character
- def get_ignored_tokens(self):
- """get_ignored_tokens"""
- pad_idx = self.dict[self.pad_str]
- start_idx = self.dict[self.beg_str]
- end_idx = self.dict[self.end_str]
- unknown_idx = self.dict[self.unknown_str]
- return [start_idx, end_idx, pad_idx, unknown_idx]
- def _bbox_decode(self, bbox, shape):
- """_bbox_decode"""
- h, w, ratio_h, ratio_w, pad_h, pad_w = shape
- if self.box_shape == "pad":
- h, w = pad_h, pad_w
- bbox[0::2] *= w
- bbox[1::2] *= h
- bbox[0::2] /= ratio_w
- bbox[1::2] /= ratio_h
- x, y, w, h = bbox
- x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2
- bbox = np.array([x1, y1, x2, y2])
- return bbox
|