| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from .object_detection import DetPredictor
- from ...utils.func_register import FuncRegister
- from ...modules.instance_segmentation.model_list import MODELS
- from ..components import *
- from ..results import InstanceSegResults
- from ..utils.process_hook import batchable_method
- class InstanceSegPredictor(DetPredictor):
- entities = MODELS
- def _build_components(self):
- ops = {}
- ops["ReadImage"] = ReadImage(
- batch_size=self.kwargs.get("batch_size", 1), format="RGB"
- )
- for cfg in self.config["Preprocess"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP.get(tf_key)
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- ops[tf_key] = op
- predictor = ImageInstanceSegPredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- ops["predictor"] = predictor
- ops["postprocess"] = InstanceSegPostProcess(
- threshold=self.config["draw_threshold"], labels=self.config["label_list"]
- )
- return ops
- @batchable_method
- def _pack_res(self, data):
- keys = ["img_path", "boxes", "masks", "labels"]
- return {"result": InstanceSegResults({key: data[key] for key in keys})}
|