| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.object_detection.model_list import MODELS
- from ..components import *
- from ..results import DetResults
- from ..utils.process_hook import batchable_method
- from .base import BasicPredictor
- class DetPredictor(BasicPredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- ops = {}
- ops["ReadImage"] = ReadImage(
- batch_size=self.kwargs.get("batch_size", 1), format="RGB"
- )
- for cfg in self.config["Preprocess"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP.get(tf_key)
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- ops[tf_key] = op
- predictor = ImageDetPredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- ops["predictor"] = predictor
- ops["postprocess"] = DetPostProcess(
- threshold=self.config["draw_threshold"], labels=self.config["label_list"]
- )
- return ops
- @register("Resize")
- def build_resize(self, target_size, keep_ratio=False, interp=2):
- assert target_size
- if isinstance(interp, int):
- interp = {
- 0: "NEAREST",
- 1: "LINEAR",
- 2: "CUBIC",
- 3: "AREA",
- 4: "LANCZOS4",
- }[interp]
- op = Resize(target_size=target_size, keep_ratio=keep_ratio, interp=interp)
- return op
- @register("NormalizeImage")
- def build_normalize(
- self,
- norm_type=None,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- is_scale=None,
- ):
- if is_scale:
- scale = 1.0 / 255.0
- else:
- scale = 1
- if norm_type != "mean_std":
- mean = 0
- std = 1
- return Normalize(mean=mean, std=std)
- @register("Permute")
- def build_to_chw(self):
- return ToCHWImage()
- @batchable_method
- def _pack_res(self, data):
- keys = ["img_path", "boxes", "labels"]
- return {"result": DetResults({key: data[key] for key in keys})}
|