segmenter.cpp 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <glog/logging.h>
  15. #include <omp.h>
  16. #include <algorithm>
  17. #include <chrono> // NOLINT
  18. #include <fstream>
  19. #include <iostream>
  20. #include <string>
  21. #include <vector>
  22. #include <utility>
  23. #include "include/paddlex/paddlex.h"
  24. #include "include/paddlex/visualize.h"
  25. using namespace std::chrono; // NOLINT
  26. DEFINE_string(model_dir, "", "Path of inference model");
  27. DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
  28. DEFINE_bool(use_trt, false, "Infering with TensorRT");
  29. DEFINE_int32(gpu_id, 0, "GPU card id");
  30. DEFINE_string(key, "", "key of encryption");
  31. DEFINE_string(image, "", "Path of test image file");
  32. DEFINE_string(image_list, "", "Path of test image list file");
  33. DEFINE_string(save_dir, "output", "Path to save visualized image");
  34. DEFINE_int32(batch_size, 1, "Batch size of infering");
  35. DEFINE_int32(thread_num,
  36. omp_get_num_procs(),
  37. "Number of preprocessing threads");
  38. DEFINE_bool(use_ir_optim, false, "use ir optimization");
  39. int main(int argc, char** argv) {
  40. // 解析命令行参数
  41. google::ParseCommandLineFlags(&argc, &argv, true);
  42. if (FLAGS_model_dir == "") {
  43. std::cerr << "--model_dir need to be defined" << std::endl;
  44. return -1;
  45. }
  46. if (FLAGS_image == "" & FLAGS_image_list == "") {
  47. std::cerr << "--image or --image_list need to be defined" << std::endl;
  48. return -1;
  49. }
  50. // 加载模型
  51. PaddleX::Model model;
  52. model.Init(FLAGS_model_dir,
  53. FLAGS_use_gpu,
  54. FLAGS_use_trt,
  55. FLAGS_gpu_id,
  56. FLAGS_key,
  57. FLAGS_use_ir_optim);
  58. int imgs = 1;
  59. // 进行预测
  60. if (FLAGS_image_list != "") {
  61. std::ifstream inf(FLAGS_image_list);
  62. if (!inf) {
  63. std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
  64. return -1;
  65. }
  66. std::string image_path;
  67. std::vector<std::string> image_paths;
  68. while (getline(inf, image_path)) {
  69. image_paths.push_back(image_path);
  70. }
  71. imgs = image_paths.size();
  72. for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
  73. int im_vec_size =
  74. std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
  75. std::vector<cv::Mat> im_vec(im_vec_size - i);
  76. std::vector<PaddleX::SegResult> results(im_vec_size - i,
  77. PaddleX::SegResult());
  78. int thread_num = std::min(FLAGS_thread_num, im_vec_size - i);
  79. #pragma omp parallel for num_threads(thread_num)
  80. for (int j = i; j < im_vec_size; ++j) {
  81. im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
  82. }
  83. model.predict(im_vec, &results, thread_num);
  84. // 可视化
  85. for (int j = 0; j < im_vec_size - i; ++j) {
  86. cv::Mat vis_img =
  87. PaddleX::Visualize(im_vec[j], results[j], model.labels);
  88. std::string save_path =
  89. PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]);
  90. cv::imwrite(save_path, vis_img);
  91. std::cout << "Visualized output saved as " << save_path << std::endl;
  92. }
  93. }
  94. } else {
  95. PaddleX::SegResult result;
  96. cv::Mat im = cv::imread(FLAGS_image, 1);
  97. model.predict(im, &result);
  98. // 可视化
  99. cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels);
  100. std::string save_path =
  101. PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
  102. cv::imwrite(save_path, vis_img);
  103. result.clear();
  104. std::cout << "Visualized output saved as " << save_path << std::endl;
  105. }
  106. return 0;
  107. }