| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <algorithm>
- #include "ultra_infer/core/fd_tensor.h"
- #include "ultra_infer/function/eigen.h"
- namespace ultra_infer {
- namespace function {
- #define DEFINE_ELEMENTWISE_OP(name) \
- template <typename T> struct name##RawKernel { \
- void operator()(const FDTensor &x, const FDTensor &y, int axis, \
- FDTensor *out) { \
- if (x.Shape() == y.Shape()) { \
- SameDimsElementwiseCompute<SameDims##name##Functor<T>>()(x, y, out); \
- } else { \
- auto x_dims = x.Shape(); \
- auto y_dims = y.Shape(); \
- if (x_dims.size() >= y_dims.size()) { \
- ElementwiseCompute<name##Functor<T>, T>(x, y, axis, \
- name##Functor<T>(), out); \
- } else { \
- ElementwiseCompute<Inverse##name##Functor<T>, T>( \
- x, y, axis, Inverse##name##Functor<T>(), out); \
- } \
- } \
- } \
- }
- inline void GetMidDims(const std::vector<int64_t> &x_dims,
- const std::vector<int64_t> &y_dims, const int axis,
- int *pre, int *n, int *post,
- int *is_run_common_broadcast) {
- *pre = 1;
- *n = 1;
- *post = 1;
- *is_run_common_broadcast = 0;
- for (int i = 0; i < axis; ++i) {
- (*pre) *= x_dims[i];
- }
- for (int i = 0; i < y_dims.size(); ++i) {
- if (x_dims[i + axis] != y_dims[i]) {
- FDASSERT(y_dims[i] == 1 || x_dims[i + axis] == 1,
- "Broadcast dimension mismatch. Operands "
- "could not be broadcast together with the shape of "
- "X = [%s] and the shape of Y = [%s]. Received [%d] "
- "in X is not equal to [%d] in Y.",
- Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
- y_dims[i]);
- *is_run_common_broadcast = 1;
- return;
- }
- (*n) *= y_dims[i];
- }
- for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
- (*post) *= x_dims[i];
- }
- }
- inline std::vector<int64_t>
- TrimTrailingSingularDims(const std::vector<int64_t> &dims) {
- // Remove trailing dimensions of size 1 for y
- auto actual_dims_size = dims.size();
- for (; actual_dims_size != 0; --actual_dims_size) {
- if (dims[actual_dims_size - 1] != 1)
- break;
- }
- if (actual_dims_size == dims.size())
- return dims;
- std::vector<int64_t> trim_dims;
- trim_dims.resize(actual_dims_size);
- for (int i = 0; i < actual_dims_size; ++i) {
- trim_dims[i] = dims[i];
- }
- return trim_dims;
- }
- inline int GetElementwiseIndex(const int64_t *x_dims_array, const int max_dim,
- const int64_t *index_array) {
- int index_ = 0;
- for (int i = 0; i < max_dim; i++) {
- if (x_dims_array[i] > 1) {
- index_ = index_ * x_dims_array[i] + index_array[i];
- }
- }
- return index_;
- }
- inline void UpdateElementwiseIndexArray(const int64_t *out_dims_array,
- const int max_dim,
- int64_t *index_array) {
- for (int i = max_dim - 1; i >= 0; --i) {
- ++index_array[i];
- if (index_array[i] >= out_dims_array[i]) {
- index_array[i] -= out_dims_array[i];
- } else {
- break;
- }
- }
- }
- inline void GetBroadcastDimsArrays(const std::vector<int64_t> &x_dims,
- const std::vector<int64_t> &y_dims,
- int64_t *x_dims_array, int64_t *y_dims_array,
- int64_t *out_dims_array, const int max_dim,
- const int axis) {
- FDASSERT(axis >= 0,
- "Axis should be great than or equal to 0, but received axis is %d.",
- axis);
- FDASSERT(axis < max_dim,
- "Axis should be less than %d, but received axis is %d.", max_dim,
- axis);
- if (x_dims.size() > y_dims.size()) {
- std::fill(y_dims_array, y_dims_array + axis, 1);
- if (axis + y_dims.size() < max_dim) {
- std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
- }
- std::copy(x_dims.data(), x_dims.data() + x_dims.size(), x_dims_array);
- std::copy(y_dims.data(), y_dims.data() + y_dims.size(),
- y_dims_array + axis);
- } else {
- std::fill(x_dims_array, x_dims_array + axis, 1);
- if (axis + x_dims.size() < max_dim) {
- std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
- }
- std::copy(x_dims.data(), x_dims.data() + x_dims.size(),
- x_dims_array + axis);
- std::copy(y_dims.data(), y_dims.data() + y_dims.size(), y_dims_array);
- }
- for (int i = 0; i < max_dim; i++) {
- FDASSERT(x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
- y_dims_array[i] <= 1,
- "Broadcast dimension mismatch. Operands "
- "could not be broadcast together with the shape of "
- "X = [%s] and the shape of Y = [%s]. Received [%d] "
- "in X is not equal to [%d] in Y.",
- Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
- y_dims[i]);
- if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
- (x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
- out_dims_array[i] = (std::max)(x_dims_array[i], y_dims_array[i]);
- } else {
- out_dims_array[i] = -1;
- }
- }
- }
- template <typename Functor, typename T, typename OutType = T>
- void CommonForwardBroadcastCPU(const FDTensor &x, const FDTensor &y,
- FDTensor *z, int64_t *x_dims_array,
- int64_t *y_dims_array, int64_t *out_dims_array,
- int max_dim, Functor func,
- const bool is_xsize_larger = true) {
- std::vector<int64_t> index_array(max_dim, 0);
- const T *x_data = reinterpret_cast<const T *>(x.Data());
- const T *y_data = reinterpret_cast<const T *>(y.Data());
- FDASSERT(x_data != nullptr, "The input X should not be empty.");
- FDASSERT(y_data != nullptr, "The input X should not be empty.");
- OutType *out_data = reinterpret_cast<OutType *>(z->Data());
- const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
- 1, std::multiplies<int64_t>());
- int x_index, y_index;
- for (int out_index = 0; out_index < out_size; ++out_index) {
- x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
- y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
- if (is_xsize_larger) {
- out_data[out_index] = func(x_data[x_index], y_data[y_index]);
- } else {
- out_data[out_index] = func(y_data[y_index], x_data[x_index]);
- }
- UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
- }
- }
- template <typename Functor, typename T, typename OutType = T>
- void CommonElementwiseBroadcastForward(const FDTensor &x, const FDTensor &y,
- FDTensor *z,
- const std::vector<int64_t> &x_dims,
- const std::vector<int64_t> &y_dims,
- Functor func, int axis,
- const bool is_xsize_larger = true) {
- int x_dims_size = x_dims.size();
- int y_dims_size = y_dims.size();
- int max_dim = (std::max)(x_dims_size, y_dims_size);
- axis = (axis == -1 ? std::abs(x_dims_size - y_dims_size) : axis);
- FDASSERT(axis >= 0,
- "Axis should be great than or equal to 0, but received axis is %d.",
- axis);
- FDASSERT(axis < max_dim,
- "Axis should be less than %d, but received axis is %d.", max_dim,
- axis);
- std::vector<int64_t> x_dims_array(max_dim);
- std::vector<int64_t> y_dims_array(max_dim);
- std::vector<int64_t> out_dims_array(max_dim);
- GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
- y_dims_array.data(), out_dims_array.data(), max_dim,
- axis);
- FDTensor tmp;
- tmp.Allocate(out_dims_array, TypeToDataType<OutType>::dtype);
- CommonForwardBroadcastCPU<Functor, T, OutType>(
- x, y, &tmp, x_dims_array.data(), y_dims_array.data(),
- out_dims_array.data(), max_dim, func, is_xsize_larger);
- *z = std::move(tmp);
- }
- template <typename Functor, typename T, typename OutType = T>
- void ElementwiseCompute(const FDTensor &x, const FDTensor &y, int axis,
- Functor func, FDTensor *z) {
- auto x_dims = x.Shape();
- auto y_dims = y.Shape();
- bool is_xsize_larger = true;
- int max_dim = x_dims.size();
- if (x_dims.size() < y_dims.size()) {
- is_xsize_larger = false;
- max_dim = y_dims.size();
- }
- int diff_size = x_dims.size() - y_dims.size();
- axis = (axis == -1 ? std::abs(diff_size) : axis);
- FDASSERT(axis >= 0,
- "Axis should be great than or equal to 0, but received axis is %d.",
- axis);
- FDASSERT(axis < max_dim,
- "Axis should be less than %d, but received axis is %d.", max_dim,
- axis);
- int pre, n, post, is_run_common_broadcast, axis_trim = 0;
- if (is_xsize_larger) {
- auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
- axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
- GetMidDims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
- &is_run_common_broadcast);
- } else {
- auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
- axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
- GetMidDims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
- &is_run_common_broadcast);
- }
- // special case for common implementation.
- // case 1: x=[2,3,1,5], y=[2,1,4,1]
- // case 2: x=[2,3,4], y=[1,1,4]
- CommonElementwiseBroadcastForward<Functor, T, OutType>(
- x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
- }
- } // namespace function
- } // namespace ultra_infer
|