| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/function/split.h"
- #include "ultra_infer/utils/utils.h"
- #include <cstring>
- namespace ultra_infer {
- namespace function {
- /*
- * All tensors' dimension should be the same and the values of
- * each dimension must be the same, except the axis dimension.
- */
- template <typename T> struct SplitFunctor {
- public:
- void operator()(const FDTensor &input,
- const std::vector<const FDTensor *> &ref_inputs, int axis,
- std::vector<FDTensor> *outputs) {
- if (input.Numel() == 0) {
- return;
- }
- size_t num = outputs->size();
- int input_rows = 1;
- auto dim_0 = ref_inputs[0]->Shape();
- for (int i = 0; i < axis; ++i) {
- input_rows *= dim_0[i];
- }
- int input_cols = 0;
- std::vector<int64_t> output_cols(outputs->size());
- for (size_t i = 0; i < num; ++i) {
- int t_cols = ref_inputs[i]->Numel() / input_rows;
- input_cols += t_cols;
- output_cols[i] = t_cols;
- }
- // computation
- for (int k = 0; k < input_rows; ++k) {
- const T *src_ptr =
- reinterpret_cast<const T *>(input.Data()) + k * input_cols;
- int col_idx = 0;
- for (size_t j = 0; j < num; ++j) {
- int col_len = output_cols[j];
- auto *out_tensor = &(outputs->at(j));
- if (out_tensor != nullptr) {
- T *dst_ptr = reinterpret_cast<T *>(out_tensor->Data()) + k * col_len;
- std::memcpy(dst_ptr, src_ptr + col_idx, sizeof(T) * col_len);
- }
- col_idx += col_len;
- }
- }
- }
- };
- inline int GetSplitAxisValue(const FDTensor &x, int axis) {
- int rank = x.Shape().size();
- FDASSERT(axis >= -rank && axis < rank,
- "The axis is expected to be in range of [%d, %d), but got %d", -rank,
- rank, axis);
- if (axis < 0) {
- axis = axis + rank;
- }
- return axis;
- }
- void CreateSplitOutputs(const FDTensor &x,
- const std::vector<int> §ions_data,
- std::vector<FDTensor> *outs, int axis) {
- axis = GetSplitAxisValue(x, axis);
- auto input_axis_dim = x.Shape().at(axis);
- std::vector<int> sections_vec;
- const int unknow_dim_val = -1;
- int unknow_dim_idx = -1;
- int num_of_unknow = 0;
- int sum_of_section = 0;
- for (size_t i = 0; i < sections_data.size(); ++i) {
- sections_vec.push_back(sections_data[i]);
- if (sections_data[i] == unknow_dim_val) {
- num_of_unknow++;
- unknow_dim_idx = i;
- } else {
- sum_of_section += sections_data[i];
- }
- }
- FDASSERT(num_of_unknow <= 1,
- "Only one dimension value of Attr(num_or_sections) "
- "in SplitOp can be -1. "
- "But received Attr(num_or_sections) = [%s].",
- Str(sections_data).c_str());
- if (unknow_dim_idx != -1) {
- // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1].
- // input_axis_dim = 5, sum_of_sections = 5.
- // the following check will fail.
- FDASSERT(sum_of_section < input_axis_dim,
- "Sum of Attr(num_or_sections) other than unknown section "
- "must be less than the input's "
- "size "
- "along the split dimension. But received Attr(num_or_sections) "
- "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
- Str(sections_data).c_str(), Str(x.Shape()).c_str(), axis);
- sections_vec[unknow_dim_idx] = input_axis_dim - sum_of_section;
- } else {
- FDASSERT(sum_of_section == input_axis_dim,
- "Sum of Attr(num_or_sections) must be equal to the input's "
- "size "
- "along the split dimension. But received Attr(num_or_sections)"
- " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
- Str(sections_data).c_str(), Str(x.Shape()).c_str(), axis);
- }
- // fill out dims
- std::vector<std::vector<int64_t>> out_dims(sections_vec.size(), x.Shape());
- for (size_t i = 0; i < sections_vec.size(); ++i) {
- out_dims[i][axis] = sections_vec[i];
- }
- for (size_t i = 0; i < sections_vec.size(); ++i) {
- (*outs)[i].Allocate(out_dims[i], x.Dtype());
- }
- }
- template <typename T>
- void SplitKernel(const FDTensor &x, const std::vector<int> §ion,
- std::vector<FDTensor> *outs, int axis) {
- size_t out_number = section.size();
- outs->resize(out_number);
- CreateSplitOutputs(x, section, outs, axis);
- std::vector<const FDTensor *> shape_refer;
- for (size_t j = 0; j < outs->size(); ++j) {
- shape_refer.emplace_back(&((*outs)[j]));
- }
- SplitFunctor<T> functor;
- functor(x, shape_refer, axis, outs);
- }
- void Split(const FDTensor &x, const std::vector<int> &num_or_sections,
- std::vector<FDTensor> *out, int axis) {
- FD_VISIT_ALL_TYPES(x.Dtype(), "Split", ([&] {
- SplitKernel<data_t>(x, num_or_sections, out, axis);
- }));
- }
- } // namespace function
- } // namespace ultra_infer
|