| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import operator
- from functools import reduce
- import paddle
- import paddle.nn.functional as F
- class IndexFirstAxis(paddle.autograd.PyLayer):
- @staticmethod
- def forward(ctx, input, indices):
- from einops import rearrange, repeat
- ctx.save_for_backward(indices)
- assert input.ndim >= 2
- ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
- second_dim = reduce(operator.mul, other_shape, 1)
- return paddle.take_along_axis(
- arr=rearrange(input, "b ... -> b (...)"),
- axis=0,
- indices=repeat(indices, "z -> z d", d=second_dim),
- ).reshape([-1, *other_shape])
- @staticmethod
- def backward(ctx, grad_output):
- """Class Attribute: torch.autograd.function.FunctionCtx.saved_tensors, can not convert, please check whether it is torch.Tensor.*/torch.autograd.function.FunctionCtx.*/torch.distributions.Distribution.* and convert manually"""
- from einops import rearrange, repeat
- (indices,) = ctx.saved_tensor()
- assert grad_output.ndim >= 2
- other_shape = grad_output.shape[1:]
- grad_output = rearrange(grad_output, "b ... -> b (...)")
- grad_input = paddle.zeros(
- shape=[ctx.first_axis_dim, tuple(grad_output.shape)[1]],
- dtype=grad_output.dtype,
- )
- grad_input.put_along_axis_(
- axis=0,
- indices=repeat(indices, "z -> z d", d=tuple(grad_output.shape)[1]),
- values=grad_output,
- )
- return grad_input.reshape([ctx.first_axis_dim, *other_shape]), None
- index_first_axis = IndexFirstAxis.apply
- class IndexPutFirstAxis(paddle.autograd.PyLayer):
- @staticmethod
- def forward(ctx, values, indices, first_axis_dim):
- ctx.save_for_backward(indices)
- assert indices.ndim == 1
- assert values.ndim >= 2
- output = paddle.zeros(
- shape=[first_axis_dim, *tuple(values.shape)[1:]], dtype=values.dtype
- )
- output[indices] = values
- return output
- @staticmethod
- def backward(ctx, grad_output):
- """Class Attribute: torch.autograd.function.FunctionCtx.saved_tensors, can not convert, please check whether it is torch.Tensor.*/torch.autograd.function.FunctionCtx.*/torch.distributions.Distribution.* and convert manually"""
- (indices,) = ctx.saved_tensor()
- grad_values = grad_output[indices]
- return grad_values, None
- index_put_first_axis = IndexPutFirstAxis.apply
- def unpad_input(hidden_states, attention_mask):
- """
- Arguments:
- hidden_states: (batch, seqlen, ...)
- attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
- Return:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
- indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
- cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
- max_seqlen_in_batch: int
- """
- from einops import rearrange
- seqlens_in_batch = paddle.sum(attention_mask, axis=-1, dtype="int32")
- indices = paddle.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = paddle.max(seqlens_in_batch).item()
- cu_seqlens = F.pad(paddle.cumsum(seqlens_in_batch, axis=0), [1, 0])
- return (
- index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- )
- def pad_input(hidden_states, indices, batch, seqlen):
- """
- Arguments:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
- indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
- batch: int, batch size for the padded sequence.
- seqlen: int, maximum sequence length for the padded sequence.
- Return:
- hidden_states: (batch, seqlen, ...)
- """
- from einops import rearrange
- output = index_put_first_axis(hidden_states, indices, batch * seqlen)
- return rearrange(output, "(b s) ... -> b s ...", b=batch)
|