| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import json
- import os
- import warnings
- from typing import Any, Dict, Optional, Union
- from paddle.common_ops_import import convert_dtype
- from ......utils import logging
- from ..transformers.configuration_utils import PretrainedConfig
- from ..utils import GENERATION_CONFIG_NAME, resolve_file_path
- DEFAULT_MAX_NEW_TOKENS = 20
- class GenerationConfig:
- r"""
- Arg:
- > Parameters that control the length of the output
- max_length (int, optional): The maximum length of the sequence to
- be generated. Default to 20.
- min_length (int, optional): The minimum length of the sequence to
- be generated. Default to 0.
- decode_strategy (str, optional): The decoding strategy in generation.
- Currently, there are three decoding strategies supported:
- "greedy_search", "sampling" and "beam_search". Default to
- "greedy_search".
- temperature (float, optional): The value used to module the next
- token probabilities in the "sampling" strategy. Default to 1.0,
- which means no effect.
- top_k (int, optional): The number of highest probability tokens to
- keep for top-k-filtering in the "sampling" strategy. Default to
- 0, which means no effect.
- top_p (float, optional): The cumulative probability for
- top-p-filtering in the "sampling" strategy. The value should
- satisfy :math:`0 <= top\_p < 1`. Default to 1.0, which means no
- effect.
- repetition_penalty (float, optional):
- The parameter for repetition penalty. 1.0 means no penalty. See `this paper
- <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. Defaults to 1.0.
- num_beams (int, optional): The number of beams in the "beam_search"
- strategy. Default to 1.
- num_beam_groups (int, optional):
- Number of groups to divide `num_beams` into in order to use DIVERSE
- BEAM SEARCH. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__
- for more details. Default to 1.
- length_penalty (float, optional): The exponential penalty to the
- sequence length in the "beam_search" strategy. The larger this
- param is, the more that the model would generate shorter
- sequences. Default to 0.0, which means no penalty.
- early_stopping (bool, optional): Whether to stop searching in the
- "beam_search" strategy when at least `num_beams` sentences are
- finished per batch or not. Default to False.
- bos_token_id (int, optional): The id of the `bos_token`. Default to
- None.
- eos_token_id (int, optional): The id of the `eos_token`. Default to
- None.
- pad_token_id (int, optional): The id of the `pad_token`. Default to
- None.
- decoder_start_token_id (int, optional): The start token id for
- encoder-decoder models. Default to None.
- forced_bos_token_id (int, optional): The id of the token to force as
- the first generated token. Usually use for multilingual models.
- Default to None.
- forced_eos_token_id (int, optional): The id of the token to force as
- the last generated token. Default to None.
- num_return_sequences (int, optional): The number of returned
- sequences for each sequence in the batch. Default to 1.
- diversity_rate (float, optional): If num_beam_groups is 1, this is the
- diversity_rate for Diverse Siblings Search. See
- `this paper https://arxiv.org/abs/1611.08562`__ for more details.
- If not, this is the diversity_rate for DIVERSE BEAM SEARCH.
- use_cache: (bool, optional): Whether to use the model cache to
- speed up decoding. Default to True.
- use_fast: (bool, optional): Whether to use fast entry of model
- for FastGeneration. Default to False.
- use_fp16_decoding: (bool, optional): Whether to use fp16 for decoding.
- Only works when fast entry is available. Default to False.
- trunc_input: (bool, optional): Whether to truncate the inputs from
- output sequences . Default to True.
- model_kwargs (dict): It can be used to specify additional kwargs
- passed to the model.
- """
- def _get_generation_mode(self):
- if hasattr(self, "num_beams") and self.num_beams == 1:
- if hasattr(self, "do_sample") and self.do_sample is True:
- generation_mode = "sampling"
- else:
- generation_mode = "greedy_search"
- else:
- generation_mode = "beam_search"
- return generation_mode
- def __init__(self, **kwargs):
- # Parameters that control the length of the output
- self.max_new_tokens = kwargs.get("max_new_tokens", DEFAULT_MAX_NEW_TOKENS)
- if "min_new_token" in kwargs:
- logging.warning(
- "<min_new_token> field is deprecated. Please use <min_new_tokens> instead."
- )
- kwargs["min_new_tokens"] = kwargs.pop("min_new_token")
- self.min_new_tokens = kwargs.pop("min_new_tokens", 0)
- self.max_length = kwargs.pop("max_length", 0)
- self.min_length = kwargs.pop("min_length", 0)
- self.early_stopping = kwargs.pop("early_stopping", False)
- self.trunc_input = kwargs.pop("trunc_input", True)
- # Parameters for manipulation of the model output logits
- self.diversity_rate = kwargs.pop("diversity_rate", 0.0)
- self.temperature = kwargs.pop("temperature", 1.0)
- self.top_k = kwargs.pop("top_k", 50)
- self.top_p = kwargs.pop("top_p", 1.0)
- self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
- self.length_penalty = kwargs.pop("length_penalty", 1.0)
- self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", None)
- self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
- self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
- self.num_beams = kwargs.pop("num_beams", 1)
- self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
- self.use_cache = kwargs.pop("use_cache", True)
- # Parameters that define the output variables of `generate`
- self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
- # Special tokens that can be used at generation time
- self.pad_token_id = kwargs.pop("pad_token_id", None)
- self.bos_token_id = kwargs.pop("bos_token_id", None)
- self.eos_token_id = kwargs.pop("eos_token_id", None)
- # Generation parameters exclusive to encoder-decoder models
- self.use_fast = kwargs.pop("use_fast", False)
- self.use_fp16_decoding = kwargs.pop("use_fp16_decoding", False)
- self.fast_ptq_sampling = kwargs.pop("fast_ptq_sampling", False)
- self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
- self._from_model_config = kwargs.pop("_from_model_config", False)
- # Additional attributes without default values
- if not self._from_model_config:
- # we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
- # model's default configuration file
- for key, value in kwargs.items():
- try:
- setattr(self, key, value)
- except AttributeError as err:
- logging.error(f"Can't set {key} with value {value} for {self}")
- raise err
- # Parameters that control the generation strategy used
- if "decode_strategy" in kwargs:
- self.decode_strategy = kwargs.pop("decode_strategy")
- else:
- self.decode_strategy = self._get_generation_mode()
- # Validate the values of the attributes
- self.validate(is_init=True)
- def to_dict(self):
- return copy.deepcopy(self.__dict__)
- def __eq__(self, other):
- if not isinstance(other, GenerationConfig):
- return False
- self_dict = self.__dict__.copy()
- other_dict = other.__dict__.copy()
- # ignore metadata
- for metadata_field in ["_from_model_config", "paddlenlp_version"]:
- self_dict.pop(metadata_field, None)
- other_dict.pop(metadata_field, None)
- return self_dict == other_dict
- def __repr__(self):
- return f"{self.__class__.__name__} {self.to_json_string()}"
- def validate(self, is_init=False):
- """
- Validates the values of the attributes of the [`GenerationConfig`] instance. Raises exceptions in the presence
- of parameterization that can be detected as incorrect from the configuration instance alone.
- Note that some parameters are best validated at generate runtime, as they may depend on other inputs and/or the
- model, such as parameters related to the generation length.
- """
- # Validation of individual attributes
- if self.early_stopping not in {True, False, "never"}:
- raise ValueError(
- f"`early_stopping` must be a boolean or 'never', but is {self.early_stopping}."
- )
- # Validation of attribute relations:
- fix_location = ""
- if is_init:
- fix_location = (
- " This was detected when initializing the generation config instance, which means the corresponding "
- "file may hold incorrect parameterization and should be fixed."
- )
- # 1. detect sampling-only parameterization when not in sampling mode
- if self.decode_strategy == "greedy_search":
- greedy_wrong_parameter_msg = (
- "using greedy search strategy. However, `{flag_name}` is set to `{flag_value}` -- this flag is only "
- 'used in sample-based generation modes. You should set `decode_strategy="greedy_search" ` or unset `{flag_name}`.'
- + fix_location
- )
- if self.temperature != 1.0:
- warnings.warn(
- greedy_wrong_parameter_msg.format(
- flag_name="temperature", flag_value=self.temperature
- ),
- UserWarning,
- )
- if self.top_p != 1.0:
- warnings.warn(
- greedy_wrong_parameter_msg.format(
- flag_name="top_p", flag_value=self.top_p
- ),
- UserWarning,
- )
- # 2. detect beam-only parameterization when not in beam mode
- if self.decode_strategy != "beam_search":
- single_beam_wrong_parameter_msg = (
- "`num_beams` is set to 1. However, `{flag_name}` is set to `{flag_value}` -- this flag is only used "
- "in beam-based generation modes. You should set `num_beams>1` or unset `{flag_name}`."
- + fix_location
- )
- if self.early_stopping is not False:
- warnings.warn(
- single_beam_wrong_parameter_msg.format(
- flag_name="early_stopping", flag_value=self.early_stopping
- ),
- UserWarning,
- )
- if self.num_beam_groups != 1:
- warnings.warn(
- single_beam_wrong_parameter_msg.format(
- flag_name="num_beam_groups", flag_value=self.num_beam_groups
- ),
- UserWarning,
- )
- if self.length_penalty != 1.0:
- warnings.warn(
- single_beam_wrong_parameter_msg.format(
- flag_name="length_penalty", flag_value=self.length_penalty
- ),
- UserWarning,
- )
- # 4. check `num_return_sequences`
- if self.num_return_sequences != 1:
- if self.decode_strategy == "greedy_search":
- raise ValueError(
- "Greedy methods without beam search do not support `num_return_sequences` different than 1 "
- f"(got {self.num_return_sequences})."
- )
- @classmethod
- def from_pretrained(
- cls,
- pretrained_model_name_or_path: Union[str, os.PathLike],
- from_hf_hub: bool = False,
- from_aistudio: bool = False,
- config_file_name: Optional[Union[str, os.PathLike]] = None,
- cache_dir: Optional[Union[str, os.PathLike]] = None,
- force_download: bool = False,
- **kwargs,
- ) -> "GenerationConfig":
- r"""
- Instantiate a [`GenerationConfig`] from a generation configuration file.
- Args:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
- paddlenlp bos server. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
- namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- - a path to a *directory* containing a configuration file saved using the
- [`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
- - a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`.
- from_hf_hub (bool, *optional*):
- load config from huggingface hub: https://huggingface.co/models
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model configuration should be cached if the
- standard cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the configuration files and override the cached versions if
- they exist.
- return_unused_kwargs (`bool`, *optional*, defaults to `False`):
- If `False`, then this function returns just the final configuration object.
- If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
- dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
- part of `kwargs` which has not been used to update `config` and is otherwise ignored.
- kwargs (`Dict[str, Any]`, *optional*):
- The values in kwargs of any keys which are configuration attributes will be used to override the loaded
- values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
- by the `return_unused_kwargs` keyword parameter.
- Returns:
- [`GenerationConfig`]: The configuration object instantiated from this pretrained model.
- Examples:
- ```python
- >>> from paddlenlp.transformers import GenerationConfig
- >>> generation_config = GenerationConfig.from_pretrained("gpt2")
- >>> # E.g. config was saved using *save_pretrained('./test/saved_model/')*
- >>> generation_config.save_pretrained("./test/saved_model/")
- >>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/")
- >>> # You can also specify configuration names to your generation configuration file
- >>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json")
- >>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json")
- >>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation
- >>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored
- >>> generation_config, unused_kwargs = GenerationConfig.from_pretrained(
- ... "gpt2", top_k=1, foo=False, do_sample=True, return_unused_kwargs=True
- ... )
- >>> generation_config.top_k
- 1
- >>> unused_kwargs
- {'foo': False}
- ```"""
- config_file_name = (
- config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
- )
- subfolder = kwargs.pop("subfolder", "")
- if subfolder is None:
- subfolder = ""
- # NOTE resolve_file_path 适配
- resolved_config_file = resolve_file_path(
- pretrained_model_name_or_path,
- [config_file_name],
- subfolder,
- cache_dir=cache_dir,
- force_download=force_download,
- from_aistudio=from_aistudio,
- from_hf_hub=from_hf_hub,
- )
- assert (
- resolved_config_file is not None
- ), f"please make sure {config_file_name} under {pretrained_model_name_or_path}"
- try:
- logging.info(f"Loading configuration file {resolved_config_file}")
- # Load config dict
- config_dict = cls._dict_from_json_file(resolved_config_file)
- except (json.JSONDecodeError, UnicodeDecodeError):
- raise EnvironmentError(
- f"Config file<'{resolved_config_file}'> is not a valid JSON file."
- )
- return cls.from_dict(config_dict, **kwargs)
- @classmethod
- def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
- with open(json_file, "r", encoding="utf-8") as reader:
- text = reader.read()
- return json.loads(text)
- def dict_paddle_dtype_to_str(self, d: Dict[str, Any]) -> None:
- """
- Checks whether the passed dictionary and its nested dicts have a *paddle_dtype* key and if it's not None,
- converts paddle.dtype to a string of just the type. For example, `paddle.float32` get converted into *"float32"*
- string, which can then be stored in the json format.
- """
- if d.get("dtype", None) is not None and not isinstance(d["dtype"], str):
- d["dtype"] = convert_dtype(d["dtype"])
- for value in d.values():
- if isinstance(value, dict):
- self.dict_paddle_dtype_to_str(value)
- @classmethod
- def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig":
- """
- Instantiates a [`GenerationConfig`] from a Python dictionary of parameters.
- Args:
- config_dict (`Dict[str, Any]`):
- Dictionary that will be used to instantiate the configuration object.
- kwargs (`Dict[str, Any]`):
- Additional parameters from which to initialize the configuration object.
- Returns:
- [`GenerationConfig`]: The configuration object instantiated from those parameters.
- """
- return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
- config = cls(**{**config_dict, **kwargs})
- unused_kwargs = config.update(**kwargs)
- # logging.info(f"Generate config {config}")
- if return_unused_kwargs:
- return config, unused_kwargs
- else:
- return config
- def to_diff_dict(self) -> Dict[str, Any]:
- """
- Removes all attributes from config which correspond to the default config attributes for better readability and
- serializes to a Python dictionary.
- Returns:
- `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
- """
- config_dict = self.to_dict()
- # get the default config dict
- default_config_dict = GenerationConfig().to_dict()
- serializable_config_dict = {}
- # only serialize values that differ from the default config
- for key, value in config_dict.items():
- if (
- key not in default_config_dict
- or key == "transformers_version"
- or value != default_config_dict[key]
- ):
- serializable_config_dict[key] = value
- self.dict_paddle_dtype_to_str(serializable_config_dict)
- return serializable_config_dict
- def to_json_string(self, use_diff: bool = True) -> str:
- """
- Serializes this instance to a JSON string.
- Args:
- use_diff (`bool`, *optional*, defaults to `True`):
- If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
- is serialized to JSON string.
- Returns:
- `str`: String containing all the attributes that make up this configuration instance in JSON format.
- """
- if use_diff is True:
- config_dict = self.to_diff_dict()
- else:
- config_dict = self.to_dict()
- return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
- def to_json_file(
- self, json_file_path: Union[str, os.PathLike], use_diff: bool = True
- ):
- """
- Save this instance to a JSON file.
- Args:
- json_file_path (`str` or `os.PathLike`):
- Path to the JSON file in which this configuration instance's parameters will be saved.
- use_diff (`bool`, *optional*, defaults to `True`):
- If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
- is serialized to JSON file.
- """
- with open(json_file_path, "w", encoding="utf-8") as writer:
- writer.write(self.to_json_string(use_diff=use_diff))
- @classmethod
- def from_model_config(cls, model_config: PretrainedConfig) -> "GenerationConfig":
- """
- Instantiates a [`GenerationConfig`] from a [`PretrainedConfig`]. This function is useful to convert legacy
- [`PretrainedConfig`] objects, which may contain generation parameters, into a stand-alone [`GenerationConfig`].
- Args:
- model_config (`PretrainedConfig`):
- The model config that will be used to instantiate the generation config.
- Returns:
- [`GenerationConfig`]: The configuration object instantiated from those parameters.
- """
- config_dict = model_config.to_dict()
- config_dict.pop("_from_model_config", None)
- config = cls.from_dict(
- config_dict, return_unused_kwargs=False, _from_model_config=True
- )
- # Special case: some models have generation attributes set in the decoder. Use them if still unset in the
- # generation config.
- for decoder_name in ("decoder", "generator", "text_config"):
- if decoder_name in config_dict:
- default_generation_config = GenerationConfig()
- decoder_config = config_dict[decoder_name]
- for attr in config.to_dict().keys():
- if attr in decoder_config and getattr(config, attr) == getattr(
- default_generation_config, attr
- ):
- setattr(config, attr, decoder_config[attr])
- return config
- def update(self, **kwargs):
- """
- Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes,
- returning all the unused kwargs.
- Args:
- kwargs (`Dict[str, Any]`):
- Dictionary of attributes to tentatively update this class.
- Returns:
- `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
- """
- to_remove = []
- for key, value in kwargs.items():
- if hasattr(self, key):
- setattr(self, key, value)
- to_remove.append(key)
- # remove all the attributes that were updated, without modifying the input dict
- unused_kwargs = {
- key: value for key, value in kwargs.items() if key not in to_remove
- }
- return unused_kwargs
|