| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # This file is based on https://github.com/Kwai-Keye/Keye/blob/main/keye-vl-8b-preview/configuration_keye.py
- # Original header:
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ......utils.device import parse_device
- from ......utils.env import get_paddle_cuda_version
- from ....common.vlm.transformers import PretrainedConfig
- class PaddleOCRVisionConfig(PretrainedConfig):
- model_type = "paddleocr_vl"
- base_config_key = "vision_config"
- def __init__(
- self,
- hidden_size=768,
- intermediate_size=3072,
- num_hidden_layers=12,
- num_attention_heads=12,
- num_channels=3,
- image_size=224,
- patch_size=14,
- hidden_act="gelu_pytorch_tanh",
- layer_norm_eps=1e-6,
- attention_dropout=0.0,
- spatial_merge_size=2,
- temporal_patch_size=2,
- tokens_per_second=2,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.patch_size = patch_size
- self.image_size = image_size
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- self.spatial_merge_size = spatial_merge_size
- self.temporal_patch_size = temporal_patch_size
- self.tokens_per_second = tokens_per_second
- class PaddleOCRVLConfig(PretrainedConfig):
- model_type = "paddleocr_vl"
- keys_to_ignore_at_inference = ["past_key_values"]
- sub_configs = {"vision_config": PaddleOCRVisionConfig}
- base_model_tp_plan = {
- "layers.*.self_attn.q_proj": "colwise",
- "layers.*.self_attn.k_proj": "colwise",
- "layers.*.self_attn.v_proj": "colwise",
- "layers.*.self_attn.o_proj": "rowwise",
- "layers.*.mlp.gate_proj": "colwise",
- "layers.*.mlp.up_proj": "colwise",
- "layers.*.mlp.down_proj": "rowwise",
- }
- base_model_pp_plan = {
- "embed_tokens": (["input_ids"], ["inputs_embeds"]),
- "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
- "norm": (["hidden_states"], ["hidden_states"]),
- }
- def __init__(
- self,
- vocab_size=32000,
- hidden_size=768,
- intermediate_size=11008,
- max_position_embeddings=32768,
- num_hidden_layers=2,
- num_attention_heads=2,
- image_token_id=101304,
- video_token_id=101305,
- vision_start_token_id=101306,
- rope_scaling=None,
- rms_norm_eps=1e-6,
- use_cache=False,
- use_flash_attention=False,
- pad_token_id=0,
- bos_token_id=1,
- eos_token_id=2,
- head_dim=128,
- hidden_act="silu",
- use_bias=False,
- rope_theta=10000,
- weight_share_add_bias=True,
- ignored_index=-100,
- attention_probs_dropout_prob=0.0,
- hidden_dropout_prob=0.0,
- compression_ratio: float = 1.0,
- num_key_value_heads=None,
- max_sequence_length=None,
- tie_word_embeddings=False,
- vision_config=None,
- **kwargs,
- ):
- import paddle
- # Set default for tied embeddings if not specified.
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- **kwargs,
- )
- if isinstance(vision_config, dict):
- self.vision_config = self.sub_configs["vision_config"](**vision_config)
- elif vision_config is None:
- self.vision_config = self.sub_configs["vision_config"]()
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.max_position_embeddings = max_position_embeddings
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.rope_scaling = rope_scaling
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.use_flash_attention = use_flash_attention
- self.pad_token_id = pad_token_id
- self.bos_token_id = bos_token_id
- self.eos_token_id = eos_token_id
- self.image_token_id = image_token_id
- self.video_token_id = video_token_id
- self.vision_start_token_id = vision_start_token_id
- self.head_dim = head_dim
- if hidden_act != "silu":
- raise NotImplementedError
- self.hidden_act = hidden_act
- self.hidden_size = hidden_size
- self.use_bias = use_bias
- self.weight_share_add_bias = weight_share_add_bias
- self.rope_theta = rope_theta
- self.ignored_index = ignored_index
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.hidden_dropout_prob = hidden_dropout_prob
- self.compression_ratio = compression_ratio
- self.num_key_value_heads = num_key_value_heads
- self.max_sequence_length = max_sequence_length
- super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
- # Currently, these configuration items are hard-coded
- self.fuse_rms_norm = False
- device_type, _ = parse_device(paddle.device.get_device())
- if device_type == "gpu":
- cuda_version = get_paddle_cuda_version()
- if cuda_version and cuda_version[0] > 11:
- self.fuse_rms_norm = True
- self.use_sparse_flash_attn = True
- self.use_var_len_flash_attn = False
- self.scale_qk_coeff = 1.0
- self.fuse_softmax_mask = False
- self.use_sparse_head_and_loss_fn = False
- self.use_recompute_loss_fn = False
- self.use_fused_head_and_loss_fn = False
- self.fuse_linear = False
- self.token_balance_seqlen = False
- self.use_rmsnorm = True
- self.fuse_ln = False
- self.cachekv_quant = False
- self.fuse_swiglu = False
- self.freq_allocation = 20
|