| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Tuple, Union
- import numpy as np
- from ....modules.general_recognition.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from ..common import Normalize, Resize, ResizeByShort, ToBatch, ToCHWImage
- from .processors import NormalizeFeatures
- from .result import IdentityResult
- class ImageFeaturePredictor(BasePredictor):
- """ImageFeaturePredictor that inherits from BasePredictor."""
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, *args: List, **kwargs: Dict) -> None:
- """Initializes ClasPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- self.preprocessors, self.infer, self.postprocessors = self._build()
- def _build_batch_sampler(self) -> ImageBatchSampler:
- """Builds and returns an ImageBatchSampler instance.
- Returns:
- ImageBatchSampler: An instance of ImageBatchSampler.
- """
- return ImageBatchSampler()
- def _get_result_class(self) -> type:
- """Returns the result class, IdentityResult.
- Returns:
- type: The IdentityResult class.
- """
- return IdentityResult
- def _build(self) -> Tuple:
- """Build the preprocessors, inference engine, and postprocessors based on the configuration.
- Returns:
- tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
- """
- preprocessors = {"Read": ReadImage(format="RGB")}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- if args is not None and "return_numpy" in args:
- args.pop("return_numpy")
- name, op = func(self, **args) if args else func(self)
- preprocessors[name] = op
- preprocessors["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- postprocessors = {}
- for key in self.config["PostProcess"]:
- func = self._FUNC_MAP.get(key)
- args = self.config["PostProcess"].get(key, {})
- name, op = func(self, **args) if args else func(self)
- postprocessors[name] = op
- return preprocessors, infer, postprocessors
- def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances)
- batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
- batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
- batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
- x = self.preprocessors["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- features = self.postprocessors["NormalizeFeatures"](batch_preds)
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "feature": features,
- }
- @register("ResizeImage")
- # TODO(gaotingquan): backend & interpolation
- def build_resize(
- self, resize_short=None, size=None, backend="cv2", interpolation="LINEAR"
- ):
- assert resize_short or size
- if resize_short:
- op = ResizeByShort(
- target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
- )
- else:
- op = Resize(target_size=size)
- return "Resize", op
- @register("NormalizeImage")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- scale=1 / 255,
- order="",
- channel_num=3,
- ):
- assert channel_num == 3
- return "Normalize", Normalize(scale=scale, mean=mean, std=std)
- @register("ToCHWImage")
- def build_to_chw(self):
- return "ToCHW", ToCHWImage()
- @register("NormalizeFeatures")
- def build_normalize_features(self):
- return "NormalizeFeatures", NormalizeFeatures()
|