| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Union
- import numpy as np
- from ....modules.multilabel_classification.model_list import MODELS
- from ..image_classification import ClasPredictor
- from .processors import MultiLabelThreshOutput
- from .result import MLClassResult
- class MLClasPredictor(ClasPredictor):
- """MLClasPredictor that inherits from BasePredictor."""
- entities = MODELS
- def __init__(
- self,
- threshold: Union[float, dict, list, None] = None,
- *args: List,
- **kwargs: Dict
- ) -> None:
- """Initializes MLClasPredictor.
- Args:
- threshold (float, dict, optional): The threshold predictions to return. If None, it will be depending on config of inference or predict. Defaults to None.
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- self.threshold = threshold
- super().__init__(*args, **kwargs)
- def _get_result_class(self) -> type:
- """Returns the result class, MLClassResult.
- Returns:
- type: The MLClassResult class.
- """
- return MLClassResult
- def process(
- self,
- batch_data: List[Union[str, np.ndarray]],
- threshold: Union[int, dict, None] = None,
- ) -> Dict[str, Any]:
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
- threshold (float, dict, optional): The threshold predictions to return. If None, it will be depending on config of inference or predict. Defaults to None.
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances)
- batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs)
- batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs)
- batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
- x = self.preprocessors["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- batch_class_ids, batch_scores, batch_label_names = self.postprocessors[
- "MultiLabelThreshOutput"
- ](
- preds=batch_preds,
- threshold=self.threshold if threshold is None else threshold,
- )
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "class_ids": batch_class_ids,
- "scores": batch_scores,
- "label_names": batch_label_names,
- }
- @ClasPredictor.register("MultiLabelThreshOutput")
- def build_threshoutput(self, threshold: Union[float, dict, list], label_list=None):
- if self.threshold is None:
- self.threshold = threshold
- return "MultiLabelThreshOutput", MultiLabelThreshOutput(class_ids=label_list)
|