| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List, Optional
- from ...utils.benchmark import benchmark
- from ..object_detection.processors import restructured_boxes
- def extract_masks_from_boxes(boxes, masks):
- """
- Extracts the portion of each mask that is within the corresponding box.
- """
- new_masks = []
- for i, box in enumerate(boxes):
- x_min, y_min, x_max, y_max = box["coordinate"]
- x_min, y_min, x_max, y_max = map(
- lambda x: int(round(x)), [x_min, y_min, x_max, y_max]
- )
- cropped_mask = masks[i][y_min:y_max, x_min:x_max]
- new_masks.append(cropped_mask)
- return new_masks
- @benchmark.timeit
- class InstanceSegPostProcess(object):
- """Save Result Transform"""
- def __init__(self, threshold=0.5, labels=None):
- super().__init__()
- self.threshold = threshold
- self.labels = labels
- def apply(self, masks, img_size, boxes=None, class_id=None, threshold=None):
- """apply"""
- if boxes is not None:
- expect_boxes = (boxes[:, 1] > threshold) & (boxes[:, 0] > -1)
- boxes = boxes[expect_boxes, :]
- boxes = restructured_boxes(boxes, self.labels, img_size)
- masks = masks[expect_boxes, :, :]
- masks = extract_masks_from_boxes(boxes, masks)
- result = {"boxes": boxes, "masks": masks}
- else:
- mask_info = []
- class_id = [list(item) for item in zip(class_id[0], class_id[1])]
- selected_masks = []
- for i, info in enumerate(class_id):
- label_id = int(info[0])
- if info[1] < threshold:
- continue
- mask_info.append(
- {
- "label": self.labels[label_id],
- "score": info[1],
- "class_id": label_id,
- }
- )
- selected_masks.append(masks[i])
- result = {"boxes": mask_info, "masks": selected_masks}
- return result
- def __call__(
- self,
- batch_outputs: List[dict],
- datas: List[dict],
- threshold: Optional[float] = None,
- ):
- """Apply the post-processing to a batch of outputs.
- Args:
- batch_outputs (List[dict]): The list of detection outputs.
- datas (List[dict]): The list of input data.
- threshold: Optional[float]: object score threshold for postprocess.
- Returns:
- List[Boxes]: The list of post-processed detection boxes.
- """
- outputs = []
- for data, output in zip(datas, batch_outputs):
- boxes_masks = self.apply(
- img_size=data["ori_img_size"],
- **output,
- threshold=threshold if threshold is not None else self.threshold
- )
- outputs.append(boxes_masks)
- return outputs
|