| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import numpy as np
- from PIL import Image
- from ....utils.deps import function_requires_deps, is_dep_available
- from ...common.result import BaseCVResult, JsonMixin
- from ...utils.color_map import get_colormap
- from ..object_detection.result import draw_box
- if is_dep_available("opencv-contrib-python"):
- import cv2
- @function_requires_deps("opencv-contrib-python")
- def draw_segm(im, masks, mask_info, alpha=0.7):
- """
- Draw segmentation on image
- """
- w_ratio = 0.4
- color_list = get_colormap(rgb=True)
- im = np.array(im).astype("float32")
- clsid2color = {}
- masks = np.array(masks)
- masks = masks.astype(np.uint8)
- for i in range(masks.shape[0]):
- mask, score, clsid = masks[i], mask_info[i]["score"], mask_info[i]["class_id"]
- if clsid not in clsid2color:
- color_index = i % len(color_list)
- clsid2color[clsid] = color_list[color_index]
- color_mask = clsid2color[clsid]
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- color_mask = np.array(color_mask)
- idx0 = np.minimum(idx[0], im.shape[0] - 1)
- idx1 = np.minimum(idx[1], im.shape[1] - 1)
- im[idx0, idx1, :] *= 1.0 - alpha
- im[idx0, idx1, :] += alpha * color_mask
- sum_x = np.sum(mask, axis=0)
- x = np.where(sum_x > 0.5)[0]
- sum_y = np.sum(mask, axis=1)
- y = np.where(sum_y > 0.5)[0]
- x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
- cv2.rectangle(
- im, (x0, y0), (x1, y1), tuple(color_mask.astype("int32").tolist()), 1
- )
- bbox_text = "%s %.2f" % (mask_info[i]["label"], score)
- t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
- cv2.rectangle(
- im,
- (x0, y0),
- (x0 + t_size[0], y0 - t_size[1] - 3),
- tuple(color_mask.astype("int32").tolist()),
- -1,
- )
- cv2.putText(
- im,
- bbox_text,
- (x0, y0 - 2),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.3,
- (0, 0, 0),
- 1,
- lineType=cv2.LINE_AA,
- )
- return Image.fromarray(im.astype("uint8"))
- def restore_to_draw_masks(img_size, boxes, masks):
- """
- Restores extracted masks to the original shape and draws them on a blank image.
- """
- restored_masks = []
- for i, (box, mask) in enumerate(zip(boxes, masks)):
- restored_mask = np.zeros(img_size, dtype=np.uint8)
- x_min, y_min, x_max, y_max = map(lambda x: int(round(x)), box["coordinate"])
- restored_mask[y_min:y_max, x_min:x_max] = mask
- restored_masks.append(restored_mask)
- return np.array(restored_masks)
- def draw_mask(im, boxes, np_masks, img_size):
- """
- Args:
- im (PIL.Image.Image): PIL image
- boxes (list): a list of dictionaries representing detection box information.
- np_masks (np.ndarray): shape:[N, im_h, im_w]
- Returns:
- im (PIL.Image.Image): visualized image
- """
- color_list = get_colormap(rgb=True)
- w_ratio = 0.4
- alpha = 0.7
- im = np.array(im).astype("float32")
- clsid2color = {}
- np_masks = restore_to_draw_masks(img_size, boxes, np_masks)
- im_h, im_w = im.shape[:2]
- np_masks = np_masks[:, :im_h, :im_w]
- for i in range(len(np_masks)):
- clsid, score = int(boxes[i]["cls_id"]), boxes[i]["score"]
- mask = np_masks[i]
- if clsid not in clsid2color:
- color_index = i % len(color_list)
- clsid2color[clsid] = color_list[color_index]
- color_mask = clsid2color[clsid]
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- color_mask = np.array(color_mask)
- im[idx[0], idx[1], :] *= 1.0 - alpha
- im[idx[0], idx[1], :] += alpha * color_mask
- return Image.fromarray(im.astype("uint8"))
- class InstanceSegResult(BaseCVResult):
- """Save Result Transform"""
- def _to_img(self):
- """apply"""
- # image = self._img_reader.read(self["input_path"])
- image = Image.fromarray(self["input_img"])
- ori_img_size = list(image.size)[::-1]
- boxes = self["boxes"]
- masks = self["masks"]
- if next((True for item in self["boxes"] if "coordinate" in item), False):
- image = draw_mask(image, boxes, masks, ori_img_size)
- image = draw_box(image, boxes)
- else:
- image = draw_segm(image, masks, boxes)
- return {"res": image}
- def _to_str(self, *args, **kwargs):
- data = copy.deepcopy(self)
- data.pop("input_img")
- data["masks"] = "..."
- return JsonMixin._to_str(data, *args, **kwargs)
- def _to_json(self, *args, **kwargs):
- data = copy.deepcopy(self)
- data.pop("input_img")
- return JsonMixin._to_json(data, *args, **kwargs)
|