| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, List, Optional, Sequence
- import numpy as np
- from ....modules.keypoint_detection.model_list import MODELS
- from ....utils import logging
- from ...common.batch_sampler import ImageBatchSampler
- from ..common import ToBatch
- from ..object_detection import DetPredictor
- from .processors import KptPostProcess, TopDownAffine
- from .result import KptResult
- class KptBatchSampler(ImageBatchSampler):
- # don't support to pass pdf file as input
- PDF_SUFFIX = []
- def sample(self, inputs):
- if not isinstance(inputs, list):
- inputs = [inputs]
- batch = []
- for input in inputs:
- if isinstance(input, (np.ndarray, dict)):
- batch.append(input)
- if len(batch) == self.batch_size:
- yield batch
- batch = []
- elif isinstance(input, str):
- file_path = (
- self._download_from_url(input)
- if input.startswith("http")
- else input
- )
- file_list = self._get_files_list(file_path)
- for file_path in file_list:
- batch.append(file_path)
- if len(batch) == self.batch_size:
- yield batch
- batch = []
- else:
- logging.warning(
- f"Not supported input data type! Only `numpy.ndarray` and `str` are supported! So has been ignored: {input}."
- )
- if len(batch) > 0:
- yield batch
- class KptPredictor(DetPredictor):
- entities = MODELS
- flip_perm = [ # The left-right joints exchange order list
- [1, 2],
- [3, 4],
- [5, 6],
- [7, 8],
- [9, 10],
- [11, 12],
- [13, 14],
- [15, 16],
- ]
- def __init__(
- self,
- *args,
- flip: bool = False,
- use_udp: Optional[bool] = None,
- **kwargs,
- ):
- """Keypoint Predictor
- Args:
- flip (bool): Whether to do flipping test. Default value is ``False``.
- use_udp (Optional[bool]): Whether to use unbiased data processing. Default value is ``None``.
- """
- self.flip = flip
- self.use_udp = use_udp
- super().__init__(*args, **kwargs)
- for op in self.pre_ops:
- if isinstance(op, TopDownAffine):
- self.input_size = op.input_size
- break
- if any([name in self.model_name for name in ["PP-TinyPose"]]):
- self.shift_heatmap = True
- else:
- self.shift_heatmap = False
- def _build_batch_sampler(self):
- return KptBatchSampler()
- def _get_result_class(self):
- return KptResult
- def _format_output(self, pred: Sequence[Any]) -> List[dict]:
- """Transform batch outputs into a list of single image output."""
- return [
- {
- "heatmap": res[0],
- "masks": res[1],
- }
- for res in zip(*pred)
- ]
- def flip_back(self, output_flipped, matched_parts):
- assert (
- output_flipped.ndim == 4
- ), "output_flipped should be [batch_size, num_joints, height, width]"
- output_flipped = output_flipped[:, :, :, ::-1]
- for pair in matched_parts:
- tmp = output_flipped[:, pair[0], :, :].copy()
- output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
- output_flipped[:, pair[1], :, :] = tmp
- return output_flipped
- def process(self, batch_data: List[dict]):
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names
- for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- datas = batch_data
- # preprocess
- for pre_op in self.pre_ops[:-1]:
- datas = pre_op(datas)
- # use `ToBatch` format batch inputs
- batch_inputs = self.pre_ops[-1]([data["img"] for data in datas])
- # do infer
- batch_preds = self.infer(batch_inputs)
- if self.flip:
- # flip w
- batch_inputs[0] = np.flip(batch_inputs[0], axis=3)
- preds_flipped = self.infer(batch_inputs)
- output_flipped = self.flip_back(preds_flipped[0], self.flip_perm)
- if self.shift_heatmap:
- output_flipped[:, :, :, 1:] = output_flipped.copy()[:, :, :, 0:-1]
- batch_preds[0] = (batch_preds[0] + output_flipped) * 0.5
- # process a batch of predictions into a list of single image result
- preds_list = self._format_output(batch_preds)
- # postprocess
- keypoints = self.post_op(preds_list, datas)
- return {
- "input_path": [data.get("img_path", None) for data in datas],
- "input_img": [data["ori_img"] for data in datas],
- "kpts": keypoints,
- }
- @DetPredictor.register("TopDownEvalAffine")
- def build_topdown_affine(self, trainsize, use_udp=False):
- return TopDownAffine(
- input_size=trainsize,
- use_udp=use_udp if self.use_udp is None else self.use_udp,
- )
- def build_to_batch(self):
- return ToBatch()
- def build_postprocess(self):
- return KptPostProcess(use_dark=True)
|