| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List
- from ....modules.open_vocabulary_segmentation.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from .processors import SAMProcessor
- from .results import SAMSegResult
- class OVSegPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, *args, **kwargs):
- """Initializes DetPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- self.pre_ops, self.infer, self.processor = self._build()
- def _build_batch_sampler(self):
- return ImageBatchSampler()
- def _get_result_class(self):
- return SAMSegResult
- def _build(self):
- # build model preprocess ops
- pre_ops = [ReadImage(format="RGB")]
- for cfg in self.config.get("Preprocess", []):
- tf_key = cfg["type"]
- func = self._FUNC_MAP[tf_key]
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- if op:
- pre_ops.append(op)
- # build infer
- infer = self.create_static_infer()
- # build model specific processor, it's required for a OV model.
- processor_cfg = self.config["Processor"]
- tf_key = processor_cfg["type"]
- func = self._FUNC_MAP[tf_key]
- processor_cfg.pop("type")
- args = processor_cfg
- processor = func(self, **args) if args else func(self)
- return pre_ops, infer, processor
- def process(self, batch_data: List[Any], prompts: Dict[str, Any]):
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[str]): A batch of input data (e.g., image file paths).
- prompt (Dict[str, Any]): Prompt for open vocabulary segmentation.
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names
- for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- image_paths = batch_data.input_paths
- src_images = self.pre_ops[0](batch_data.instances)
- datas = src_images
- # preprocess
- for pre_op in self.pre_ops[1:-1]:
- datas = pre_op(datas)
- # use Model-specific preprocessor to format batch inputs
- batch_inputs = self.processor.preprocess(datas, **prompts)
- # do infer
- batch_preds = self.infer(batch_inputs)
- # postprocess
- masks = self.processor.postprocess(batch_preds)
- return {
- "input_path": image_paths,
- "input_img": src_images,
- "prompts": [prompts] * len(image_paths),
- "masks": masks,
- }
- @register("SAMProcessor")
- def build_sam_preprocessor(
- self, size=1024, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]
- ):
- return SAMProcessor(size=size, img_mean=mean, img_std=std)
|