| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import numpy as np
- from ....utils.deps import class_requires_deps, is_dep_available
- from ...utils.benchmark import benchmark
- from ..common.vision import funcs as F
- from ..common.vision.processors import _BaseResize
- if is_dep_available("opencv-contrib-python"):
- import cv2
- @benchmark.timeit
- class Resize(_BaseResize):
- """Resize the image."""
- def __init__(
- self, target_size=-1, keep_ratio=False, size_divisor=None, interp="LINEAR"
- ):
- """
- Initialize the instance.
- Args:
- target_size (list|tuple|int, optional): Target width and height. -1 will return the images directly without resizing.
- keep_ratio (bool, optional): Whether to keep the aspect ratio of resized
- image. Default: False.
- size_divisor (int|None, optional): Divisor of resized image size.
- Default: None.
- interp (str, optional): Interpolation method. Choices are 'NEAREST',
- 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
- """
- super().__init__(size_divisor=size_divisor, interp=interp)
- if isinstance(target_size, int):
- target_size = (target_size, target_size)
- F.check_image_size(target_size)
- self.target_size = target_size
- self.keep_ratio = keep_ratio
- def __call__(self, imgs, target_size=None):
- """apply"""
- target_size = self.target_size if target_size is None else target_size
- if isinstance(target_size, int):
- target_size = (target_size, target_size)
- F.check_image_size(target_size)
- return [self.resize(img, target_size) for img in imgs]
- def resize(self, img, target_size):
- if target_size == (-1, -1):
- # If the final target_size == (-1, -1), it means use the source input image directly.
- return img
- original_size = img.shape[:2][::-1]
- assert target_size[0] > 0 and target_size[1] > 0
- if self.keep_ratio:
- h, w = img.shape[0:2]
- target_size, _ = self._rescale_size((w, h), target_size)
- if self.size_divisor:
- target_size = [
- math.ceil(i / self.size_divisor) * self.size_divisor
- for i in target_size
- ]
- img = F.resize(img, target_size, interp=self.interp)
- return img
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class SegPostProcess:
- """Semantic Segmentation PostProcess
- This class is responsible for post-processing detection results, only including
- restoring the prediction segmentation map to the original image size for now.
- """
- def __call__(self, imgs, src_images):
- assert len(imgs) == len(src_images)
- src_sizes = [src_image.shape[:2][::-1] for src_image in src_images]
- return [
- self.reverse_resize(img, src_size) for img, src_size in zip(imgs, src_sizes)
- ]
- def reverse_resize(self, img, src_size):
- """Restore the prediction map to source image size using nearest interpolation.
- Args:
- img (np.ndarray): prediction map with shape of (1, width, height)
- src_size (Tuple[int, int]): source size of the input image, with format of (width, height).
- """
- assert isinstance(src_size, (tuple, list)) and len(src_size) == 2
- assert src_size[0] > 0 and src_size[1] > 0
- assert img.ndim == 3
- reversed_img = cv2.resize(
- img[0], dsize=src_size, interpolation=cv2.INTER_NEAREST
- )
- reversed_img = np.expand_dims(reversed_img, axis=0)
- return reversed_img
|