| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Tuple, Union
- import numpy as np
- from ....modules.table_recognition.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from ..common import Normalize, ResizeByLong, ToBatch, ToCHWImage
- from .processors import Pad, TableLabelDecode
- from .result import TableRecResult
- class TablePredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, *args: List, **kwargs: Dict) -> None:
- super().__init__(*args, **kwargs)
- self.preprocessors, self.infer, self.postprocessors = self._build()
- def _build_batch_sampler(self) -> ImageBatchSampler:
- return ImageBatchSampler()
- def _get_result_class(self) -> type:
- return TableRecResult
- def _build(self) -> Tuple:
- preprocessors = []
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- op = func(self, **args) if args else func(self)
- if op:
- preprocessors.append(op)
- preprocessors.append(ToBatch())
- infer = self.create_static_infer()
- postprocessors = TableLabelDecode(
- model_name=self.config["Global"]["model_name"],
- merge_no_span_structure=self.config["PreProcess"]["transform_ops"][1][
- "TableLabelEncode"
- ]["merge_no_span_structure"],
- dict_character=self.config["PostProcess"]["character_dict"],
- )
- return preprocessors, infer, postprocessors
- def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- batch_raw_imgs = self.preprocessors[0](imgs=batch_data.instances) # ReadImage
- ori_shapes = []
- for s in range(len(batch_raw_imgs)):
- ori_shapes.append([batch_raw_imgs[s].shape[1], batch_raw_imgs[s].shape[0]])
- batch_imgs = self.preprocessors[1](imgs=batch_raw_imgs) # ResizeByLong
- batch_imgs = self.preprocessors[2](imgs=batch_imgs) # Normalize
- pad_results = self.preprocessors[3](imgs=batch_imgs) # Pad
- pad_imgs = []
- padding_sizes = []
- for pad_img, padding_size in pad_results:
- pad_imgs.append(pad_img)
- padding_sizes.append(padding_size)
- batch_imgs = self.preprocessors[4](imgs=pad_imgs) # ToCHWImage
- x = self.preprocessors[5](imgs=batch_imgs) # ToBatch
- batch_preds = self.infer(x=x)
- table_result = self.postprocessors(
- pred=batch_preds,
- img_size=padding_sizes,
- ori_img_size=ori_shapes,
- )
- table_result_bbox = []
- table_result_structure = []
- table_result_structure_score = []
- for i in range(len(table_result)):
- table_result_bbox.append(table_result[i]["bbox"])
- table_result_structure.append(table_result[i]["structure"])
- table_result_structure_score.append(table_result[i]["structure_score"])
- final_result = {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "bbox": table_result_bbox,
- "structure": table_result_structure,
- "structure_score": table_result_structure_score,
- }
- return final_result
- @register("DecodeImage")
- def build_readimg(self, channel_first=False, img_mode="BGR"):
- assert channel_first is False
- assert img_mode == "BGR"
- return ReadImage(format=img_mode)
- @register("TableLabelEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("TableBoxEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("ResizeTableImage")
- def build_resize_table(self, max_len=488, resize_bboxes=True):
- return ResizeByLong(target_long_edge=max_len)
- @register("NormalizeImage")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- scale=1 / 255,
- order="hwc",
- ):
- return Normalize(mean=mean, std=std)
- @register("PaddingTableImage")
- def build_padding(self, size=[488, 448], pad_value=0):
- return Pad(target_size=size[0], val=pad_value)
- @register("ToCHWImage")
- def build_to_chw(self):
- return ToCHWImage()
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None
- def _pack_res(self, single):
- keys = ["input_path", "bbox", "structure"]
- return TableRecResult({key: single[key] for key in keys})
|