| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Union
- from ....modules.video_classification.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import VideoBatchSampler
- from ...common.reader import ReadVideo
- from ..base import BasePredictor
- from .processors import (
- CenterCrop,
- Image2Array,
- NormalizeVideo,
- Scale,
- ToBatch,
- VideoClasTopk,
- )
- from .result import TopkVideoResult
- class VideoClasPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(self, topk: Union[int, None] = None, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.topk = topk
- self.pre_tfs, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return VideoBatchSampler()
- def _get_result_class(self):
- return TopkVideoResult
- def _build(self):
- pre_tfs = {}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- name, op = func(self, **args) if args else func(self)
- if op:
- pre_tfs[name] = op
- pre_tfs["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- post_op = {}
- for key in self.config["PostProcess"]:
- func = self._FUNC_MAP.get(key)
- args = self.config["PostProcess"].get(key, {})
- name, op = func(self, **args) if args else func(self)
- post_op[name] = op
- return pre_tfs, infer, post_op
- def process(self, batch_data, topk: Union[int, None] = None):
- batch_raw_videos = self.pre_tfs["ReadVideo"](videos=batch_data)
- batch_videos = self.pre_tfs["Scale"](videos=batch_raw_videos)
- batch_videos = self.pre_tfs["CenterCrop"](videos=batch_videos)
- batch_videos = self.pre_tfs["Image2Array"](videos=batch_videos)
- batch_videos = self.pre_tfs["NormalizeVideo"](videos=batch_videos)
- x = self.pre_tfs["ToBatch"](videos=batch_videos)
- batch_preds = self.infer(x=x)
- batch_class_ids, batch_scores, batch_label_names = self.post_op["Topk"](
- batch_preds, topk=topk or self.topk
- )
- return {
- "input_path": batch_data,
- "class_ids": batch_class_ids,
- "scores": batch_scores,
- "label_names": batch_label_names,
- }
- @register("ReadVideo")
- def build_readvideo(
- self,
- num_seg=8,
- target_size=224,
- seg_len=1,
- sample_type=None,
- ):
- return "ReadVideo", ReadVideo(
- backend="decord",
- num_seg=num_seg,
- seg_len=seg_len,
- sample_type=sample_type,
- )
- @register("Scale")
- def build_scale(self, short_size=224):
- return "Scale", Scale(
- short_size=short_size,
- fixed_ratio=True,
- keep_ratio=None,
- do_round=False,
- )
- @register("CenterCrop")
- def build_center_crop(self, target_size=224):
- return "CenterCrop", CenterCrop(target_size=target_size)
- @register("Image2Array")
- def build_image2array(self, data_format="tchw"):
- return "Image2Array", Image2Array(transpose=True, data_format="tchw")
- @register("NormalizeVideo")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- ):
- return "NormalizeVideo", NormalizeVideo(mean=mean, std=std)
- @register("Topk")
- def build_topk(self, topk, label_list=None):
- if not self.topk:
- self.topk = int(topk)
- return "Topk", VideoClasTopk(class_ids=label_list)
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None, None
|