| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Union
- import pandas as pd
- from ....utils.deps import pipeline_requires_extra
- from ...models.ts_classification.result import TSClsResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- @benchmark.time_methods
- @pipeline_requires_extra("ts")
- class TSClsPipeline(BasePipeline):
- """TSClsPipeline Pipeline"""
- entities = "ts_classification"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """Initializes the Time Series classification pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- ts_classification_model_config = config["SubModules"]["TSClassification"]
- self.ts_classification_model = self.create_model(ts_classification_model_config)
- def predict(
- self, input: Union[str, List[str], pd.DataFrame, List[pd.DataFrame]], **kwargs
- ) -> TSClsResult:
- """Predicts time series classification results for the given input.
- Args:
- input (Union[str, list[str], pd.DataFrame, list[pd.DataFrame]]): The input image(s) or path(s) to the images.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- TSFcResult: The predicted time series classification results.
- """
- yield from self.ts_classification_model(input)
|