benchmark.md 4.5 KB

模型推理 Benchmark

PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具体如下:

  • PADDLE_PDX_INFER_BENCHMARK:设置为 True 时则开启 Benchmark,默认为 False
  • PADDLE_PDX_INFER_BENCHMARK_WARMUP:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 0
  • PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE: 设置随机数据的尺寸,默认为 224
  • PADDLE_PDX_INFER_BENCHMARK_ITER:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 None 时,将使用随机数据进行测试;
  • PADDLE_PDX_INFER_BENCHMARK_OUTPUT:用于设置保存的目录,如 ./benchmark,默认为 None,表示不保存 Benchmark 指标;

使用示例如下:

PADDLE_PDX_INFER_BENCHMARK=True \
PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \
PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \
PADDLE_PDX_INFER_BENCHMARK_ITER=10 \
PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark \
python main.py \
    -c ./paddlex/configs/object_detection/PicoDet-XS.yaml \
    -o Global.mode=predict \
    -o Predict.model_dir=None \
    -o Predict.batch_size=2 \
    -o Predict.input=None

在开启 Benchmark 后,将自动打印 benchmark 指标:

+----------------+-----------------+-----------------+------------------------+
|   Component    | Total Time (ms) | Number of Calls | Avg Time Per Call (ms) |
+----------------+-----------------+-----------------+------------------------+
|    ReadCmp     |   102.39458084  |        10       |      10.23945808       |
|     Resize     |   11.20400429   |        20       |       0.56020021       |
|   Normalize    |   34.11078453   |        20       |       1.70553923       |
|   ToCHWImage   |    0.05555153   |        20       |       0.00277758       |
|    Copy2GPU    |    9.10568237   |        10       |       0.91056824       |
|     Infer      |   98.22225571   |        10       |       9.82222557       |
|    Copy2CPU    |   14.30845261   |        10       |       1.43084526       |
| DetPostProcess |    0.45251846   |        20       |       0.02262592       |
+----------------+-----------------+-----------------+------------------------+
+-------------+-----------------+---------------------+----------------------------+
|    Stage    | Total Time (ms) | Number of Instances | Avg Time Per Instance (ms) |
+-------------+-----------------+---------------------+----------------------------+
|  PreProcess |   147.76492119  |          20         |         7.38824606         |
|  Inference  |   121.63639069  |          20         |         6.08181953         |
| PostProcess |    0.45251846   |          20         |         0.02262592         |
|   End2End   |   294.03519630  |          20         |        14.70175982         |
|    WarmUp   |  7937.82591820  |          5          |       1587.56518364        |
+-------------+-----------------+---------------------+----------------------------+

在 Benchmark 结果中,会统计该模型全部组件(Component)的总耗时(Total Time,单位为“毫秒”)、调用次数Number of Calls)、调用平均执行耗时(Avg Time Per Call,单位“毫秒”),以及按预热(WarmUp)、预处理(PreProcess)、模型推理(Inference)、后处理(PostProcess)和端到端(End2End)进行划分的耗时统计,包括每个阶段的总耗时(Total Time,单位为“毫秒”)、样本数Number of Instances)和单样本平均执行耗时(Avg Time Per Instance,单位“毫秒”),同时,上述指标会保存到到本地: ./benchmark/detail.csv./benchmark/summary.csv

Component,Total Time (ms),Number of Calls,Avg Time Per Call (ms)
ReadCmp,0.10199093818664551,10,0.01019909381866455
Resize,0.011309385299682617,20,0.0005654692649841309
Normalize,0.035140275955200195,20,0.0017570137977600097
ToCHWImage,4.744529724121094e-05,20,2.3722648620605467e-06
Copy2GPU,0.00861215591430664,10,0.000861215591430664
Infer,0.820899248123169,10,0.08208992481231689
Copy2CPU,0.006002187728881836,10,0.0006002187728881836
DetPostProcess,0.0004436969757080078,20,2.218484878540039e-05
Stage,Total Time (ms),Number of Instance,Avg Time Per Instance (ms)
PreProcess,0.14848804473876953,20,0.007424402236938477
Inference,0.8355135917663574,20,0.04177567958831787
PostProcess,0.0004436969757080078,20,2.218484878540039e-05
End2End,1.0054960250854492,20,0.05027480125427246
WarmUp,8.869974851608276,5,1.7739949703216553