pipeline.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, Tuple, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. from ...models.keypoint_detection.result import KptResult
  19. Number = Union[int, float]
  20. class KeypointDetectionPipeline(BasePipeline):
  21. """Keypoint Detection pipeline"""
  22. entities = "human_keypoint_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. ) -> None:
  30. """
  31. Initializes the class with given configurations and options.
  32. Args:
  33. config (Dict): Configuration dictionary containing model and other parameters.
  34. device (str): The device to run the prediction on. Default is None.
  35. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  36. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. """
  38. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  39. # create object detection model
  40. model_cfg = config["SubModules"]["ObjectDetection"]
  41. model_kwargs = {}
  42. self.det_threshold = None
  43. if "threshold" in model_cfg:
  44. model_kwargs["threshold"] = model_cfg["threshold"]
  45. self.det_threshold = model_cfg["threshold"]
  46. if "imgsz" in model_cfg:
  47. model_kwargs["imgsz"] = model_cfg["imgsz"]
  48. self.det_model = self.create_model(model_cfg, **model_kwargs)
  49. # create keypoint detection model
  50. model_cfg = config["SubModules"]["KeypointDetection"]
  51. model_kwargs = {}
  52. if "flip" in model_cfg:
  53. model_kwargs["flip"] = model_cfg["flip"]
  54. if "use_udp" in model_cfg:
  55. model_kwargs["use_udp"] = model_cfg["use_udp"]
  56. self.kpt_model = self.create_model(model_cfg, **model_kwargs)
  57. self.kpt_input_size = self.kpt_model.input_size
  58. def _box_xyxy2cs(
  59. self, bbox: Union[Number, np.ndarray], padding: float = 1.25
  60. ) -> Tuple[np.ndarray, np.ndarray]:
  61. """
  62. Convert bounding box from (x1, y1, x2, y2) to center and scale.
  63. Args:
  64. bbox (Union[Number, np.ndarray]): The bounding box coordinates (x1, y1, x2, y2).
  65. padding (float): The padding factor to adjust the scale of the bounding box.
  66. Returns:
  67. Tuple[np.ndarray, np.ndarray]: The center and scale of the bounding box.
  68. """
  69. x1, y1, x2, y2 = bbox[:4]
  70. center = np.array([x1 + x2, y1 + y2]) * 0.5
  71. # reshape bbox to fixed aspect ratio
  72. aspect_ratio = self.kpt_input_size[0] / self.kpt_input_size[1]
  73. w, h = x2 - x1, y2 - y1
  74. if w > aspect_ratio * h:
  75. h = w / aspect_ratio
  76. elif w < aspect_ratio * h:
  77. w = h * aspect_ratio
  78. scale = np.array([w, h]) * padding
  79. return center, scale
  80. def predict(
  81. self,
  82. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  83. det_threshold: Optional[float] = None,
  84. **kwargs,
  85. ) -> KptResult:
  86. """Predicts image classification results for the given input.
  87. Args:
  88. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  89. det_threshold (float): The detection threshold. Defaults to None.
  90. **kwargs: Additional keyword arguments that can be passed to the function.
  91. Returns:
  92. KptResult: The predicted KeyPoint Detection results.
  93. """
  94. det_threshold = self.det_threshold if det_threshold is None else det_threshold
  95. for det_res in self.det_model(input, threshold=det_threshold):
  96. ori_img, img_path = det_res["input_img"], det_res["input_path"]
  97. single_img_res = {"input_path": img_path, "input_img": ori_img, "boxes": []}
  98. for box in det_res["boxes"]:
  99. center, scale = self._box_xyxy2cs(box["coordinate"])
  100. kpt_res = next(
  101. self.kpt_model(
  102. {
  103. "img": ori_img,
  104. "center": center,
  105. "scale": scale,
  106. }
  107. )
  108. )
  109. single_img_res["boxes"].append(
  110. {
  111. "coordinate": box["coordinate"],
  112. "det_score": box["score"],
  113. "keypoints": kpt_res["kpts"][0]["keypoints"],
  114. "kpt_score": kpt_res["kpts"][0]["kpt_score"],
  115. }
  116. )
  117. yield KptResult(single_img_res)