pipeline.py 4.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, Tuple, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. from ...models.object_detection.result import DetResult
  19. class ObjectDetectionPipeline(BasePipeline):
  20. """Object Detection Pipeline"""
  21. entities = "object_detection"
  22. def __init__(
  23. self,
  24. config: Dict,
  25. device: str = None,
  26. pp_option: PaddlePredictorOption = None,
  27. use_hpip: bool = False,
  28. ) -> None:
  29. """
  30. Initializes the class with given configurations and options.
  31. Args:
  32. config (Dict): Configuration dictionary containing model and other parameters.
  33. device (str): The device to run the prediction on. Default is None.
  34. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  35. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  36. """
  37. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  38. model_cfg = config["SubModules"]["ObjectDetection"]
  39. model_kwargs = {}
  40. if "threshold" in model_cfg:
  41. model_kwargs["threshold"] = model_cfg["threshold"]
  42. if "img_size" in model_cfg:
  43. model_kwargs["img_size"] = model_cfg["img_size"]
  44. if "layout_nms" in model_cfg:
  45. model_kwargs["layout_nms"] = model_cfg["layout_nms"]
  46. if "layout_unclip_ratio" in model_cfg:
  47. model_kwargs["layout_unclip_ratio"] = model_cfg["layout_unclip_ratio"]
  48. if "layout_merge_bboxes_mode" in model_cfg:
  49. model_kwargs["layout_merge_bboxes_mode"] = model_cfg[
  50. "layout_merge_bboxes_mode"
  51. ]
  52. self.det_model = self.create_model(model_cfg, **model_kwargs)
  53. def predict(
  54. self,
  55. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  56. threshold: Optional[Union[float, dict]] = None,
  57. layout_nms: Optional[bool] = None,
  58. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  59. layout_merge_bboxes_mode: Optional[str] = None,
  60. **kwargs,
  61. ) -> DetResult:
  62. """Predicts object detection results for the given input.
  63. Args:
  64. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  65. img_size (Optional[Union[int, Tuple[int, int]]]): The size of the input image. Default is None.
  66. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  67. layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
  68. layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
  69. Defaults to None.
  70. If it's a single number, then both width and height are used.
  71. If it's a tuple of two numbers, then they are used separately for width and height respectively.
  72. If it's None, then no unclipping will be performed.
  73. layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
  74. **kwargs: Additional keyword arguments that can be passed to the function.
  75. Returns:
  76. DetResult: The predicted detection results.
  77. """
  78. yield from self.det_model(
  79. input,
  80. threshold=threshold,
  81. layout_nms=layout_nms,
  82. layout_unclip_ratio=layout_unclip_ratio,
  83. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  84. **kwargs,
  85. )