pipeline.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import pandas as pd
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. from ...models.ts_forecasting.result import TSFcResult
  19. class TSFcPipeline(BasePipeline):
  20. """TSFcPipeline Pipeline"""
  21. entities = "ts_forecast"
  22. def __init__(
  23. self,
  24. config: Dict,
  25. device: str = None,
  26. pp_option: PaddlePredictorOption = None,
  27. use_hpip: bool = False,
  28. ) -> None:
  29. """Initializes the Time Series Forecast pipeline.
  30. Args:
  31. config (Dict): Configuration dictionary containing various settings.
  32. device (str, optional): Device to run the predictions on. Defaults to None.
  33. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  34. use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  35. """
  36. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  37. ts_forecast_model_config = config["SubModules"]["TSForecast"]
  38. self.ts_forecast_model = self.create_model(ts_forecast_model_config)
  39. def predict(
  40. self, input: Union[str, List[str], pd.DataFrame, List[pd.DataFrame]], **kwargs
  41. ) -> TSFcResult:
  42. """Predicts time series forecast results for the given input.
  43. Args:
  44. input (Union[str, list[str], pd.DataFrame, list[pd.DataFrame]]): The input image(s) or path(s) to the images.
  45. **kwargs: Additional keyword arguments that can be passed to the function.
  46. Returns:
  47. TSFcResult: The predicted time series forecast results.
  48. """
  49. yield from self.ts_forecast_model(input)