| 12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import paddlex as pdx
- from paddlex.seg import transforms
- optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
- pdx.utils.download_and_decompress(optic_dataset, path='./')
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(), transforms.ResizeRangeScaling(),
- transforms.RandomPaddingCrop(crop_size=512), transforms.Normalize()
- ])
- eval_transforms = transforms.Compose([
- transforms.ResizeByLong(long_size=512), transforms.Padding(target_size=512),
- transforms.Normalize()
- ])
- train_dataset = pdx.datasets.SegDataset(
- data_dir='optic_disc_seg',
- file_list='optic_disc_seg/train_list.txt',
- label_list='optic_disc_seg/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir='optic_disc_seg',
- file_list='optic_disc_seg/val_list.txt',
- label_list='optic_disc_seg/labels.txt',
- transforms=eval_transforms)
- num_classes = len(train_dataset.labels)
- model = pdx.seg.UNet(num_classes=num_classes)
- model.train(
- num_epochs=20,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_dir='output/unet',
- use_vdl=True)
|