trainer.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from abc import ABC, abstractmethod
  16. from pathlib import Path
  17. from .build_model import build_model
  18. from ...utils.device import update_device_num, set_env_for_device
  19. from ...utils.misc import AutoRegisterABCMetaClass
  20. from ...utils.config import AttrDict
  21. def build_trainer(config: AttrDict) -> "BaseTrainer":
  22. """build model trainer
  23. Args:
  24. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  25. Returns:
  26. BaseTrainer: the trainer, which is subclass of BaseTrainer.
  27. """
  28. model_name = config.Global.model
  29. return BaseTrainer.get(model_name)(config)
  30. class BaseTrainer(ABC, metaclass=AutoRegisterABCMetaClass):
  31. """Base Model Trainer"""
  32. __is_base = True
  33. def __init__(self, config: AttrDict):
  34. """Initialize the instance.
  35. Args:
  36. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  37. """
  38. super().__init__()
  39. self.config = config
  40. self.global_config = config.Global
  41. self.train_config = config.Train
  42. self.benchmark_config = config.get("Benchmark", None)
  43. config_path = self.train_config.get("basic_config_path", None)
  44. self.pdx_config, self.pdx_model = build_model(
  45. self.global_config.model, config_path=config_path
  46. )
  47. def train(self, *args, **kwargs):
  48. """execute model training"""
  49. os.makedirs(self.global_config.output, exist_ok=True)
  50. self.update_config()
  51. self.dump_config()
  52. train_args = self.get_train_kwargs()
  53. if self.benchmark_config is not None:
  54. train_args.update({"benchmark": self.benchmark_config})
  55. train_args.update(
  56. {
  57. "uniform_output_enabled": self.train_config.get(
  58. "uniform_output_enabled", True
  59. )
  60. }
  61. )
  62. train_result = self.pdx_model.train(**train_args)
  63. assert (
  64. train_result.returncode == 0
  65. ), f"Encountered an unexpected error({train_result.returncode}) in \
  66. training!"
  67. def dump_config(self, config_file_path: str = None):
  68. """dump the config
  69. Args:
  70. config_file_path (str, optional): the path to save dumped config. Defaults to None,
  71. means that save in `Global.output` as `config.yaml`.
  72. """
  73. if config_file_path is None:
  74. config_file_path = os.path.join(self.global_config.output, "config.yaml")
  75. self.pdx_config.dump(config_file_path)
  76. def get_device(self, using_device_number: int = None) -> str:
  77. """get device setting from config
  78. Args:
  79. using_device_number (int, optional): specify device number to use. Defaults to None,
  80. means that base on config setting.
  81. Returns:
  82. str: device setting, such as: `gpu:0,1`, `npu:0,1` `cpu`.
  83. """
  84. set_env_for_device(self.global_config.device)
  85. if using_device_number:
  86. return update_device_num(self.global_config.device, using_device_number)
  87. return self.global_config.device
  88. @abstractmethod
  89. def update_config(self):
  90. """update training config"""
  91. raise NotImplementedError
  92. @abstractmethod
  93. def get_train_kwargs(self):
  94. """get key-value arguments of model training function"""
  95. raise NotImplementedError