| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <gflags/gflags.h>
- #include <omp.h>
- #include <memory>
- #include <string>
- #include <fstream>
- #include "model_deploy/common/include/paddle_deploy.h"
- DEFINE_string(model_filename, "", "Path of det inference model");
- DEFINE_string(params_filename, "", "Path of det inference params");
- DEFINE_string(cfg_file, "", "Path of yaml file");
- DEFINE_string(model_type, "", "model type");
- DEFINE_string(image_list, "", "Path of test image file");
- DEFINE_int32(batch_size, 1, "Batch size of infering");
- DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
- DEFINE_int32(gpu_id, 0, "GPU card id");
- DEFINE_bool(use_trt, false, "Infering with TensorRT");
- int main(int argc, char** argv) {
- // Parsing command-line
- google::ParseCommandLineFlags(&argc, &argv, true);
- // create model
- PaddleDeploy::Model* model = PaddleDeploy::CreateModel(FLAGS_model_type);
- // model init
- model->Init(FLAGS_cfg_file);
- // inference engine init
- PaddleDeploy::PaddleEngineConfig engine_config;
- engine_config.model_filename = FLAGS_model_filename;
- engine_config.params_filename = FLAGS_params_filename;
- engine_config.use_gpu = FLAGS_use_gpu;
- engine_config.gpu_id = FLAGS_gpu_id;
- engine_config.use_trt = FLAGS_use_trt;
- if (FLAGS_use_trt) {
- engine_config.precision = 0;
- }
- model->PaddleEngineInit(engine_config);
- // Mini-batch
- std::vector<std::string> image_paths;
- if (FLAGS_image_list != "") {
- std::ifstream inf(FLAGS_image_list);
- if (!inf) {
- std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
- return -1;
- }
- std::string image_path;
- while (getline(inf, image_path)) {
- image_paths.push_back(image_path);
- }
- }
- // infer
- std::vector<PaddleDeploy::Result> results;
- for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
- // Read image
- int im_vec_size =
- std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
- std::vector<cv::Mat> im_vec(im_vec_size - i);
- #pragma omp parallel for num_threads(im_vec_size - i)
- for (int j = i; j < im_vec_size; ++j) {
- im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
- }
- model->Predict(im_vec, &results);
- std::cout << i / FLAGS_batch_size << " group -----" << std::endl;
- for (auto j = 0; j < results.size(); ++j) {
- std::cout << "Result for sample " << j << std::endl;
- std::cout << results[j] << std::endl;
- }
- }
- delete model;
- return 0;
- }
|