mask_rcnn_r50_fpn.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压小度熊分拣数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.RandomResizeByShort(
  10. short_sizes=[640, 672, 704, 736, 768, 800],
  11. max_size=1333,
  12. interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
  13. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  14. ])
  15. eval_transforms = T.Compose([
  16. T.ResizeByShort(
  17. short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
  18. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  19. ])
  20. # 定义训练和验证所用的数据集
  21. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/datasets.md
  22. train_dataset = pdx.datasets.CocoDetection(
  23. data_dir='xiaoduxiong_ins_det/JPEGImages',
  24. ann_file='xiaoduxiong_ins_det/train.json',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.CocoDetection(
  28. data_dir='xiaoduxiong_ins_det/JPEGImages',
  29. ann_file='xiaoduxiong_ins_det/val.json',
  30. transforms=eval_transforms)
  31. # 初始化模型,并进行训练
  32. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/train/visualdl.md
  33. num_classes = len(train_dataset.labels)
  34. model = pdx.det.MaskRCNN(
  35. num_classes=num_classes, backbone='ResNet50', with_fpn=True)
  36. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/instance_segmentation.md
  37. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/parameters.md
  38. model.train(
  39. num_epochs=12,
  40. train_dataset=train_dataset,
  41. train_batch_size=1,
  42. eval_dataset=eval_dataset,
  43. pretrain_weights='COCO',
  44. learning_rate=0.00125,
  45. lr_decay_epochs=[8, 11],
  46. warmup_steps=10,
  47. warmup_start_lr=0.0,
  48. save_dir='output/mask_rcnn_r50_fpn',
  49. use_vdl=True)