det_transforms.py 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. try:
  15. from collections.abc import Sequence
  16. except Exception:
  17. from collections import Sequence
  18. import random
  19. import os.path as osp
  20. import numpy as np
  21. import cv2
  22. from PIL import Image, ImageEnhance
  23. from .imgaug_support import execute_imgaug
  24. from .ops import *
  25. from .box_utils import *
  26. class DetTransform:
  27. """检测数据处理基类
  28. """
  29. def __init__(self):
  30. pass
  31. class Compose(DetTransform):
  32. """根据数据预处理/增强列表对输入数据进行操作。
  33. 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
  34. Args:
  35. transforms (list): 数据预处理/增强列表。
  36. Raises:
  37. TypeError: 形参数据类型不满足需求。
  38. ValueError: 数据长度不匹配。
  39. """
  40. def __init__(self, transforms):
  41. if not isinstance(transforms, list):
  42. raise TypeError('The transforms must be a list!')
  43. if len(transforms) < 1:
  44. raise ValueError('The length of transforms ' + \
  45. 'must be equal or larger than 1!')
  46. self.transforms = transforms
  47. self.use_mixup = False
  48. for t in self.transforms:
  49. if type(t).__name__ == 'MixupImage':
  50. self.use_mixup = True
  51. # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
  52. for op in self.transforms:
  53. if not isinstance(op, DetTransform):
  54. import imgaug.augmenters as iaa
  55. if not isinstance(op, iaa.Augmenter):
  56. raise Exception(
  57. "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
  58. )
  59. def __call__(self, im, im_info=None, label_info=None):
  60. """
  61. Args:
  62. im (str/np.ndarray): 图像路径/图像np.ndarray数据。
  63. im_info (dict): 存储与图像相关的信息,dict中的字段如下:
  64. - im_id (np.ndarray): 图像序列号,形状为(1,)。
  65. - image_shape (np.ndarray): 图像原始大小,形状为(2,),
  66. image_shape[0]为高,image_shape[1]为宽。
  67. - mixup (list): list为[im, im_info, label_info],分别对应
  68. 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
  69. 注意,当前epoch若无需进行mixup,则无该字段。
  70. label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
  71. - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  72. 其中n代表真实标注框的个数。
  73. - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
  74. 其中n代表真实标注框的个数。
  75. - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
  76. 其中n代表真实标注框的个数。
  77. - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
  78. 长度为n,其中n代表真实标注框的个数。
  79. - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
  80. 其中n代表真实标注框的个数。
  81. - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
  82. 其中n代表真实标注框的个数。
  83. Returns:
  84. tuple: 根据网络所需字段所组成的tuple;
  85. 字段由transforms中的最后一个数据预处理操作决定。
  86. """
  87. def decode_image(im_file, im_info, label_info):
  88. if im_info is None:
  89. im_info = dict()
  90. if isinstance(im_file, np.ndarray):
  91. if len(im_file.shape) != 3:
  92. raise Exception(
  93. "im should be 3-dimensions, but now is {}-dimensions".
  94. format(len(im_file.shape)))
  95. im = im_file
  96. else:
  97. try:
  98. im = cv2.imread(im_file).astype('float32')
  99. except:
  100. raise TypeError('Can\'t read The image file {}!'.format(
  101. im_file))
  102. im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
  103. # make default im_info with [h, w, 1]
  104. im_info['im_resize_info'] = np.array(
  105. [im.shape[0], im.shape[1], 1.], dtype=np.float32)
  106. im_info['image_shape'] = np.array([im.shape[0],
  107. im.shape[1]]).astype('int32')
  108. if not self.use_mixup:
  109. if 'mixup' in im_info:
  110. del im_info['mixup']
  111. # decode mixup image
  112. if 'mixup' in im_info:
  113. im_info['mixup'] = \
  114. decode_image(im_info['mixup'][0],
  115. im_info['mixup'][1],
  116. im_info['mixup'][2])
  117. if label_info is None:
  118. return (im, im_info)
  119. else:
  120. return (im, im_info, label_info)
  121. outputs = decode_image(im, im_info, label_info)
  122. im = outputs[0]
  123. im_info = outputs[1]
  124. if len(outputs) == 3:
  125. label_info = outputs[2]
  126. for op in self.transforms:
  127. if im is None:
  128. return None
  129. if isinstance(op, DetTransform):
  130. outputs = op(im, im_info, label_info)
  131. im = outputs[0]
  132. else:
  133. im = execute_imgaug(op, im)
  134. if label_info is not None:
  135. outputs = (im, im_info, label_info)
  136. else:
  137. outputs = (im, im_info)
  138. return outputs
  139. def add_augmenters(self, augmenters):
  140. if not isinstance(augmenters, list):
  141. raise Exception(
  142. "augmenters should be list type in func add_augmenters()")
  143. self.transforms = augmenters + self.transforms.transforms
  144. class ResizeByShort(DetTransform):
  145. """根据图像的短边调整图像大小(resize)。
  146. 1. 获取图像的长边和短边长度。
  147. 2. 根据短边与short_size的比例,计算长边的目标长度,
  148. 此时高、宽的resize比例为short_size/原图短边长度。
  149. 3. 如果max_size>0,调整resize比例:
  150. 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
  151. 4. 根据调整大小的比例对图像进行resize。
  152. Args:
  153. target_size (int): 短边目标长度。默认为800。
  154. max_size (int): 长边目标长度的最大限制。默认为1333。
  155. Raises:
  156. TypeError: 形参数据类型不满足需求。
  157. """
  158. def __init__(self, short_size=800, max_size=1333):
  159. self.max_size = int(max_size)
  160. if not isinstance(short_size, int):
  161. raise TypeError(
  162. "Type of short_size is invalid. Must be Integer, now is {}".
  163. format(type(short_size)))
  164. self.short_size = short_size
  165. if not (isinstance(self.max_size, int)):
  166. raise TypeError("max_size: input type is invalid.")
  167. def __call__(self, im, im_info=None, label_info=None):
  168. """
  169. Args:
  170. im (numnp.ndarraypy): 图像np.ndarray数据。
  171. im_info (dict, 可选): 存储与图像相关的信息。
  172. label_info (dict, 可选): 存储与标注框相关的信息。
  173. Returns:
  174. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  175. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  176. 存储与标注框相关信息的字典。
  177. 其中,im_info更新字段为:
  178. - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
  179. 三者组成的np.ndarray,形状为(3,)。
  180. Raises:
  181. TypeError: 形参数据类型不满足需求。
  182. ValueError: 数据长度不匹配。
  183. """
  184. if im_info is None:
  185. im_info = dict()
  186. if not isinstance(im, np.ndarray):
  187. raise TypeError("ResizeByShort: image type is not numpy.")
  188. if len(im.shape) != 3:
  189. raise ValueError('ResizeByShort: image is not 3-dimensional.')
  190. im_short_size = min(im.shape[0], im.shape[1])
  191. im_long_size = max(im.shape[0], im.shape[1])
  192. scale = float(self.short_size) / im_short_size
  193. if self.max_size > 0 and np.round(scale *
  194. im_long_size) > self.max_size:
  195. scale = float(self.max_size) / float(im_long_size)
  196. resized_width = int(round(im.shape[1] * scale))
  197. resized_height = int(round(im.shape[0] * scale))
  198. im_resize_info = [resized_height, resized_width, scale]
  199. im = cv2.resize(
  200. im, (resized_width, resized_height),
  201. interpolation=cv2.INTER_LINEAR)
  202. im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
  203. if label_info is None:
  204. return (im, im_info)
  205. else:
  206. return (im, im_info, label_info)
  207. class Padding(DetTransform):
  208. """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
  209. `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
  210. 进行padding,最终输出图像为[320, 640]。
  211. 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
  212. a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
  213. 图像为[960, 960]。
  214. b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
  215. 输出图像为[640, 960]。
  216. 1. 如果coarsest_stride为1,target_size为None则直接返回。
  217. 2. 获取图像的高H、宽W。
  218. 3. 计算填充后图像的高H_new、宽W_new。
  219. 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
  220. 并将原图的np.ndarray粘贴于左上角。
  221. Args:
  222. coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
  223. target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
  224. Raises:
  225. TypeError: 形参`target_size`数据类型不满足需求。
  226. ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
  227. """
  228. def __init__(self, coarsest_stride=1, target_size=None):
  229. self.coarsest_stride = coarsest_stride
  230. if target_size is not None:
  231. if not isinstance(target_size, int):
  232. if not isinstance(target_size, tuple) and not isinstance(
  233. target_size, list):
  234. raise TypeError(
  235. "Padding: Type of target_size must in (int|list|tuple)."
  236. )
  237. elif len(target_size) != 2:
  238. raise ValueError(
  239. "Padding: Length of target_size must equal 2.")
  240. self.target_size = target_size
  241. def __call__(self, im, im_info=None, label_info=None):
  242. """
  243. Args:
  244. im (numnp.ndarraypy): 图像np.ndarray数据。
  245. im_info (dict, 可选): 存储与图像相关的信息。
  246. label_info (dict, 可选): 存储与标注框相关的信息。
  247. Returns:
  248. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  249. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  250. 存储与标注框相关信息的字典。
  251. Raises:
  252. TypeError: 形参数据类型不满足需求。
  253. ValueError: 数据长度不匹配。
  254. ValueError: coarsest_stride,target_size需有且只有一个被指定。
  255. ValueError: target_size小于原图的大小。
  256. """
  257. if im_info is None:
  258. im_info = dict()
  259. if not isinstance(im, np.ndarray):
  260. raise TypeError("Padding: image type is not numpy.")
  261. if len(im.shape) != 3:
  262. raise ValueError('Padding: image is not 3-dimensional.')
  263. im_h, im_w, im_c = im.shape[:]
  264. if isinstance(self.target_size, int):
  265. padding_im_h = self.target_size
  266. padding_im_w = self.target_size
  267. elif isinstance(self.target_size, list) or isinstance(self.target_size,
  268. tuple):
  269. padding_im_w = self.target_size[0]
  270. padding_im_h = self.target_size[1]
  271. elif self.coarsest_stride > 0:
  272. padding_im_h = int(
  273. np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
  274. padding_im_w = int(
  275. np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
  276. else:
  277. raise ValueError(
  278. "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
  279. )
  280. pad_height = padding_im_h - im_h
  281. pad_width = padding_im_w - im_w
  282. if pad_height < 0 or pad_width < 0:
  283. raise ValueError(
  284. 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
  285. .format(im_w, im_h, padding_im_w, padding_im_h))
  286. padding_im = np.zeros(
  287. (padding_im_h, padding_im_w, im_c), dtype=np.float32)
  288. padding_im[:im_h, :im_w, :] = im
  289. if label_info is None:
  290. return (padding_im, im_info)
  291. else:
  292. return (padding_im, im_info, label_info)
  293. class Resize(DetTransform):
  294. """调整图像大小(resize)。
  295. - 当目标大小(target_size)类型为int时,根据插值方式,
  296. 将图像resize为[target_size, target_size]。
  297. - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
  298. 将图像resize为target_size。
  299. 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
  300. Args:
  301. target_size (int/list/tuple): 短边目标长度。默认为608。
  302. interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
  303. ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
  304. Raises:
  305. TypeError: 形参数据类型不满足需求。
  306. ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
  307. 'AREA', 'LANCZOS4', 'RANDOM']中。
  308. """
  309. # The interpolation mode
  310. interp_dict = {
  311. 'NEAREST': cv2.INTER_NEAREST,
  312. 'LINEAR': cv2.INTER_LINEAR,
  313. 'CUBIC': cv2.INTER_CUBIC,
  314. 'AREA': cv2.INTER_AREA,
  315. 'LANCZOS4': cv2.INTER_LANCZOS4
  316. }
  317. def __init__(self, target_size=608, interp='LINEAR'):
  318. self.interp = interp
  319. if not (interp == "RANDOM" or interp in self.interp_dict):
  320. raise ValueError("interp should be one of {}".format(
  321. self.interp_dict.keys()))
  322. if isinstance(target_size, list) or isinstance(target_size, tuple):
  323. if len(target_size) != 2:
  324. raise TypeError(
  325. 'when target is list or tuple, it should include 2 elements, but it is {}'
  326. .format(target_size))
  327. elif not isinstance(target_size, int):
  328. raise TypeError(
  329. "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
  330. .format(type(target_size)))
  331. self.target_size = target_size
  332. def __call__(self, im, im_info=None, label_info=None):
  333. """
  334. Args:
  335. im (np.ndarray): 图像np.ndarray数据。
  336. im_info (dict, 可选): 存储与图像相关的信息。
  337. label_info (dict, 可选): 存储与标注框相关的信息。
  338. Returns:
  339. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  340. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  341. 存储与标注框相关信息的字典。
  342. Raises:
  343. TypeError: 形参数据类型不满足需求。
  344. ValueError: 数据长度不匹配。
  345. """
  346. if im_info is None:
  347. im_info = dict()
  348. if not isinstance(im, np.ndarray):
  349. raise TypeError("Resize: image type is not numpy.")
  350. if len(im.shape) != 3:
  351. raise ValueError('Resize: image is not 3-dimensional.')
  352. if self.interp == "RANDOM":
  353. interp = random.choice(list(self.interp_dict.keys()))
  354. else:
  355. interp = self.interp
  356. im = resize(im, self.target_size, self.interp_dict[interp])
  357. if label_info is None:
  358. return (im, im_info)
  359. else:
  360. return (im, im_info, label_info)
  361. class RandomHorizontalFlip(DetTransform):
  362. """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
  363. 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
  364. 执行2-4步操作,否则直接返回。
  365. 2. 水平翻转图像。
  366. 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
  367. 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
  368. Args:
  369. prob (float): 随机水平翻转的概率。默认为0.5。
  370. Raises:
  371. TypeError: 形参数据类型不满足需求。
  372. """
  373. def __init__(self, prob=0.5):
  374. self.prob = prob
  375. if not isinstance(self.prob, float):
  376. raise TypeError("RandomHorizontalFlip: input type is invalid.")
  377. def __call__(self, im, im_info=None, label_info=None):
  378. """
  379. Args:
  380. im (np.ndarray): 图像np.ndarray数据。
  381. im_info (dict, 可选): 存储与图像相关的信息。
  382. label_info (dict, 可选): 存储与标注框相关的信息。
  383. Returns:
  384. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  385. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  386. 存储与标注框相关信息的字典。
  387. 其中,im_info更新字段为:
  388. - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  389. 其中n代表真实标注框的个数。
  390. - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
  391. 其中n代表真实标注框的个数。
  392. Raises:
  393. TypeError: 形参数据类型不满足需求。
  394. ValueError: 数据长度不匹配。
  395. """
  396. if not isinstance(im, np.ndarray):
  397. raise TypeError(
  398. "RandomHorizontalFlip: image is not a numpy array.")
  399. if len(im.shape) != 3:
  400. raise ValueError(
  401. "RandomHorizontalFlip: image is not 3-dimensional.")
  402. if im_info is None or label_info is None:
  403. raise TypeError(
  404. 'Cannot do RandomHorizontalFlip! ' +
  405. 'Becasuse the im_info and label_info can not be None!')
  406. if 'gt_bbox' not in label_info:
  407. raise TypeError('Cannot do RandomHorizontalFlip! ' + \
  408. 'Becasuse gt_bbox is not in label_info!')
  409. image_shape = im_info['image_shape']
  410. gt_bbox = label_info['gt_bbox']
  411. height = image_shape[0]
  412. width = image_shape[1]
  413. if np.random.uniform(0, 1) < self.prob:
  414. im = horizontal_flip(im)
  415. if gt_bbox.shape[0] == 0:
  416. if label_info is None:
  417. return (im, im_info)
  418. else:
  419. return (im, im_info, label_info)
  420. label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
  421. if 'gt_poly' in label_info and \
  422. len(label_info['gt_poly']) != 0:
  423. label_info['gt_poly'] = segms_horizontal_flip(
  424. label_info['gt_poly'], height, width)
  425. if label_info is None:
  426. return (im, im_info)
  427. else:
  428. return (im, im_info, label_info)
  429. class Normalize(DetTransform):
  430. """对图像进行标准化。
  431. 1. 归一化图像到到区间[0.0, 1.0]。
  432. 2. 对图像进行减均值除以标准差操作。
  433. Args:
  434. mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
  435. std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
  436. Raises:
  437. TypeError: 形参数据类型不满足需求。
  438. """
  439. def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
  440. self.mean = mean
  441. self.std = std
  442. if not (isinstance(self.mean, list) and isinstance(self.std, list)):
  443. raise TypeError("NormalizeImage: input type is invalid.")
  444. from functools import reduce
  445. if reduce(lambda x, y: x * y, self.std) == 0:
  446. raise TypeError('NormalizeImage: std is invalid!')
  447. def __call__(self, im, im_info=None, label_info=None):
  448. """
  449. Args:
  450. im (numnp.ndarraypy): 图像np.ndarray数据。
  451. im_info (dict, 可选): 存储与图像相关的信息。
  452. label_info (dict, 可选): 存储与标注框相关的信息。
  453. Returns:
  454. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  455. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  456. 存储与标注框相关信息的字典。
  457. """
  458. mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
  459. std = np.array(self.std)[np.newaxis, np.newaxis, :]
  460. im = normalize(im, mean, std)
  461. if label_info is None:
  462. return (im, im_info)
  463. else:
  464. return (im, im_info, label_info)
  465. class RandomDistort(DetTransform):
  466. """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
  467. 1. 对变换的操作顺序进行随机化操作。
  468. 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
  469. Args:
  470. brightness_range (float): 明亮度因子的范围。默认为0.5。
  471. brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
  472. contrast_range (float): 对比度因子的范围。默认为0.5。
  473. contrast_prob (float): 随机调整对比度的概率。默认为0.5。
  474. saturation_range (float): 饱和度因子的范围。默认为0.5。
  475. saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
  476. hue_range (int): 色调因子的范围。默认为18。
  477. hue_prob (float): 随机调整色调的概率。默认为0.5。
  478. """
  479. def __init__(self,
  480. brightness_range=0.5,
  481. brightness_prob=0.5,
  482. contrast_range=0.5,
  483. contrast_prob=0.5,
  484. saturation_range=0.5,
  485. saturation_prob=0.5,
  486. hue_range=18,
  487. hue_prob=0.5):
  488. self.brightness_range = brightness_range
  489. self.brightness_prob = brightness_prob
  490. self.contrast_range = contrast_range
  491. self.contrast_prob = contrast_prob
  492. self.saturation_range = saturation_range
  493. self.saturation_prob = saturation_prob
  494. self.hue_range = hue_range
  495. self.hue_prob = hue_prob
  496. def __call__(self, im, im_info=None, label_info=None):
  497. """
  498. Args:
  499. im (np.ndarray): 图像np.ndarray数据。
  500. im_info (dict, 可选): 存储与图像相关的信息。
  501. label_info (dict, 可选): 存储与标注框相关的信息。
  502. Returns:
  503. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  504. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  505. 存储与标注框相关信息的字典。
  506. """
  507. brightness_lower = 1 - self.brightness_range
  508. brightness_upper = 1 + self.brightness_range
  509. contrast_lower = 1 - self.contrast_range
  510. contrast_upper = 1 + self.contrast_range
  511. saturation_lower = 1 - self.saturation_range
  512. saturation_upper = 1 + self.saturation_range
  513. hue_lower = -self.hue_range
  514. hue_upper = self.hue_range
  515. ops = [brightness, contrast, saturation, hue]
  516. random.shuffle(ops)
  517. params_dict = {
  518. 'brightness': {
  519. 'brightness_lower': brightness_lower,
  520. 'brightness_upper': brightness_upper
  521. },
  522. 'contrast': {
  523. 'contrast_lower': contrast_lower,
  524. 'contrast_upper': contrast_upper
  525. },
  526. 'saturation': {
  527. 'saturation_lower': saturation_lower,
  528. 'saturation_upper': saturation_upper
  529. },
  530. 'hue': {
  531. 'hue_lower': hue_lower,
  532. 'hue_upper': hue_upper
  533. }
  534. }
  535. prob_dict = {
  536. 'brightness': self.brightness_prob,
  537. 'contrast': self.contrast_prob,
  538. 'saturation': self.saturation_prob,
  539. 'hue': self.hue_prob
  540. }
  541. for id in range(4):
  542. params = params_dict[ops[id].__name__]
  543. prob = prob_dict[ops[id].__name__]
  544. params['im'] = im
  545. if np.random.uniform(0, 1) < prob:
  546. im = ops[id](**params)
  547. if label_info is None:
  548. return (im, im_info)
  549. else:
  550. return (im, im_info, label_info)
  551. class MixupImage(DetTransform):
  552. """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
  553. 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
  554. 1. 从随机beta分布中抽取出随机因子factor。
  555. 2.
  556. - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
  557. - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
  558. - 其余情况,执行下述操作:
  559. (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
  560. (2)拼接原图像标注框和mixup图像标注框。
  561. (3)拼接原图像标注框类别和mixup图像标注框类别。
  562. (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
  563. 3. 更新im_info中的image_shape信息。
  564. Args:
  565. alpha (float): 随机beta分布的下限。默认为1.5。
  566. beta (float): 随机beta分布的上限。默认为1.5。
  567. mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
  568. 默认为-1。
  569. Raises:
  570. ValueError: 数据长度不匹配。
  571. """
  572. def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
  573. self.alpha = alpha
  574. self.beta = beta
  575. if self.alpha <= 0.0:
  576. raise ValueError("alpha shold be positive in MixupImage")
  577. if self.beta <= 0.0:
  578. raise ValueError("beta shold be positive in MixupImage")
  579. self.mixup_epoch = mixup_epoch
  580. def _mixup_img(self, img1, img2, factor):
  581. h = max(img1.shape[0], img2.shape[0])
  582. w = max(img1.shape[1], img2.shape[1])
  583. img = np.zeros((h, w, img1.shape[2]), 'float32')
  584. img[:img1.shape[0], :img1.shape[1], :] = \
  585. img1.astype('float32') * factor
  586. img[:img2.shape[0], :img2.shape[1], :] += \
  587. img2.astype('float32') * (1.0 - factor)
  588. return img.astype('float32')
  589. def __call__(self, im, im_info=None, label_info=None):
  590. """
  591. Args:
  592. im (np.ndarray): 图像np.ndarray数据。
  593. im_info (dict, 可选): 存储与图像相关的信息。
  594. label_info (dict, 可选): 存储与标注框相关的信息。
  595. Returns:
  596. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  597. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  598. 存储与标注框相关信息的字典。
  599. 其中,im_info更新字段为:
  600. - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  601. im_info删除的字段:
  602. - mixup (list): 与当前字段进行mixup的图像相关信息。
  603. label_info更新字段为:
  604. - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
  605. 其中n代表真实标注框的个数。
  606. - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
  607. 其中n代表真实标注框的个数。
  608. - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
  609. 其中n代表真实标注框的个数。
  610. Raises:
  611. TypeError: 形参数据类型不满足需求。
  612. """
  613. if im_info is None:
  614. raise TypeError('Cannot do MixupImage! ' +
  615. 'Becasuse the im_info can not be None!')
  616. if 'mixup' not in im_info:
  617. if label_info is None:
  618. return (im, im_info)
  619. else:
  620. return (im, im_info, label_info)
  621. factor = np.random.beta(self.alpha, self.beta)
  622. factor = max(0.0, min(1.0, factor))
  623. if im_info['epoch'] > self.mixup_epoch \
  624. or factor >= 1.0:
  625. im_info.pop('mixup')
  626. if label_info is None:
  627. return (im, im_info)
  628. else:
  629. return (im, im_info, label_info)
  630. if factor <= 0.0:
  631. return im_info.pop('mixup')
  632. im = self._mixup_img(im, im_info['mixup'][0], factor)
  633. if label_info is None:
  634. raise TypeError('Cannot do MixupImage! ' +
  635. 'Becasuse the label_info can not be None!')
  636. if 'gt_bbox' not in label_info or \
  637. 'gt_class' not in label_info or \
  638. 'gt_score' not in label_info:
  639. raise TypeError('Cannot do MixupImage! ' + \
  640. 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
  641. gt_bbox1 = label_info['gt_bbox']
  642. gt_bbox2 = im_info['mixup'][2]['gt_bbox']
  643. gt_class1 = label_info['gt_class']
  644. gt_class2 = im_info['mixup'][2]['gt_class']
  645. gt_score1 = label_info['gt_score']
  646. gt_score2 = im_info['mixup'][2]['gt_score']
  647. if 'gt_poly' in label_info:
  648. gt_poly1 = label_info['gt_poly']
  649. gt_poly2 = im_info['mixup'][2]['gt_poly']
  650. is_crowd1 = label_info['is_crowd']
  651. is_crowd2 = im_info['mixup'][2]['is_crowd']
  652. if 0 not in gt_class1 and 0 not in gt_class2:
  653. gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
  654. gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
  655. gt_score = np.concatenate(
  656. (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
  657. if 'gt_poly' in label_info:
  658. label_info['gt_poly'] = gt_poly1 + gt_poly2
  659. is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
  660. elif 0 in gt_class1:
  661. gt_bbox = gt_bbox2
  662. gt_class = gt_class2
  663. gt_score = gt_score2 * (1. - factor)
  664. if 'gt_poly' in label_info:
  665. label_info['gt_poly'] = gt_poly2
  666. is_crowd = is_crowd2
  667. else:
  668. gt_bbox = gt_bbox1
  669. gt_class = gt_class1
  670. gt_score = gt_score1 * factor
  671. if 'gt_poly' in label_info:
  672. label_info['gt_poly'] = gt_poly1
  673. is_crowd = is_crowd1
  674. label_info['gt_bbox'] = gt_bbox
  675. label_info['gt_score'] = gt_score
  676. label_info['gt_class'] = gt_class
  677. label_info['is_crowd'] = is_crowd
  678. im_info['image_shape'] = np.array([im.shape[0],
  679. im.shape[1]]).astype('int32')
  680. im_info.pop('mixup')
  681. if label_info is None:
  682. return (im, im_info)
  683. else:
  684. return (im, im_info, label_info)
  685. class RandomExpand(DetTransform):
  686. """随机扩张图像,模型训练时的数据增强操作。
  687. 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
  688. 2. 计算扩张后图像大小。
  689. 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
  690. 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
  691. 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
  692. Args:
  693. ratio (float): 图像扩张的最大比例。默认为4.0。
  694. prob (float): 随机扩张的概率。默认为0.5。
  695. fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
  696. """
  697. def __init__(self,
  698. ratio=4.,
  699. prob=0.5,
  700. fill_value=[123.675, 116.28, 103.53]):
  701. super(RandomExpand, self).__init__()
  702. assert ratio > 1.01, "expand ratio must be larger than 1.01"
  703. self.ratio = ratio
  704. self.prob = prob
  705. assert isinstance(fill_value, Sequence), \
  706. "fill value must be sequence"
  707. if not isinstance(fill_value, tuple):
  708. fill_value = tuple(fill_value)
  709. self.fill_value = fill_value
  710. def __call__(self, im, im_info=None, label_info=None):
  711. """
  712. Args:
  713. im (np.ndarray): 图像np.ndarray数据。
  714. im_info (dict, 可选): 存储与图像相关的信息。
  715. label_info (dict, 可选): 存储与标注框相关的信息。
  716. Returns:
  717. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  718. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  719. 存储与标注框相关信息的字典。
  720. 其中,im_info更新字段为:
  721. - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  722. label_info更新字段为:
  723. - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
  724. 其中n代表真实标注框的个数。
  725. - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
  726. 其中n代表真实标注框的个数。
  727. Raises:
  728. TypeError: 形参数据类型不满足需求。
  729. """
  730. if im_info is None or label_info is None:
  731. raise TypeError(
  732. 'Cannot do RandomExpand! ' +
  733. 'Becasuse the im_info and label_info can not be None!')
  734. if 'gt_bbox' not in label_info or \
  735. 'gt_class' not in label_info:
  736. raise TypeError('Cannot do RandomExpand! ' + \
  737. 'Becasuse gt_bbox/gt_class is not in label_info!')
  738. if np.random.uniform(0., 1.) < self.prob:
  739. return (im, im_info, label_info)
  740. if 'gt_class' in label_info and 0 in label_info['gt_class']:
  741. return (im, im_info, label_info)
  742. image_shape = im_info['image_shape']
  743. height = int(image_shape[0])
  744. width = int(image_shape[1])
  745. expand_ratio = np.random.uniform(1., self.ratio)
  746. h = int(height * expand_ratio)
  747. w = int(width * expand_ratio)
  748. if not h > height or not w > width:
  749. return (im, im_info, label_info)
  750. y = np.random.randint(0, h - height)
  751. x = np.random.randint(0, w - width)
  752. canvas = np.ones((h, w, 3), dtype=np.float32)
  753. canvas *= np.array(self.fill_value, dtype=np.float32)
  754. canvas[y:y + height, x:x + width, :] = im
  755. im_info['image_shape'] = np.array([h, w]).astype('int32')
  756. if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
  757. label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
  758. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  759. label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
  760. height, width, expand_ratio)
  761. return (canvas, im_info, label_info)
  762. class RandomCrop(DetTransform):
  763. """随机裁剪图像。
  764. 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
  765. 2. 随机打乱thresholds。
  766. 3. 遍历thresholds中各元素:
  767. (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
  768. (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
  769. (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
  770. (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
  771. (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
  772. 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
  773. 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
  774. Args:
  775. aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
  776. thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
  777. scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
  778. num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
  779. allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
  780. cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
  781. """
  782. def __init__(self,
  783. aspect_ratio=[.5, 2.],
  784. thresholds=[.0, .1, .3, .5, .7, .9],
  785. scaling=[.3, 1.],
  786. num_attempts=50,
  787. allow_no_crop=True,
  788. cover_all_box=False):
  789. self.aspect_ratio = aspect_ratio
  790. self.thresholds = thresholds
  791. self.scaling = scaling
  792. self.num_attempts = num_attempts
  793. self.allow_no_crop = allow_no_crop
  794. self.cover_all_box = cover_all_box
  795. def __call__(self, im, im_info=None, label_info=None):
  796. """
  797. Args:
  798. im (np.ndarray): 图像np.ndarray数据。
  799. im_info (dict, 可选): 存储与图像相关的信息。
  800. label_info (dict, 可选): 存储与标注框相关的信息。
  801. Returns:
  802. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  803. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  804. 存储与标注框相关信息的字典。
  805. 其中,im_info更新字段为:
  806. - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
  807. label_info更新字段为:
  808. - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
  809. 其中n代表真实标注框的个数。
  810. - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
  811. 其中n代表真实标注框的个数。
  812. - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
  813. 其中n代表真实标注框的个数。
  814. Raises:
  815. TypeError: 形参数据类型不满足需求。
  816. """
  817. if im_info is None or label_info is None:
  818. raise TypeError(
  819. 'Cannot do RandomCrop! ' +
  820. 'Becasuse the im_info and label_info can not be None!')
  821. if 'gt_bbox' not in label_info or \
  822. 'gt_class' not in label_info:
  823. raise TypeError('Cannot do RandomCrop! ' + \
  824. 'Becasuse gt_bbox/gt_class is not in label_info!')
  825. if len(label_info['gt_bbox']) == 0:
  826. return (im, im_info, label_info)
  827. if 'gt_class' in label_info and 0 in label_info['gt_class']:
  828. return (im, im_info, label_info)
  829. image_shape = im_info['image_shape']
  830. w = image_shape[1]
  831. h = image_shape[0]
  832. gt_bbox = label_info['gt_bbox']
  833. thresholds = list(self.thresholds)
  834. if self.allow_no_crop:
  835. thresholds.append('no_crop')
  836. np.random.shuffle(thresholds)
  837. for thresh in thresholds:
  838. if thresh == 'no_crop':
  839. return (im, im_info, label_info)
  840. found = False
  841. for i in range(self.num_attempts):
  842. scale = np.random.uniform(*self.scaling)
  843. min_ar, max_ar = self.aspect_ratio
  844. aspect_ratio = np.random.uniform(
  845. max(min_ar, scale**2), min(max_ar, scale**-2))
  846. crop_h = int(h * scale / np.sqrt(aspect_ratio))
  847. crop_w = int(w * scale * np.sqrt(aspect_ratio))
  848. crop_y = np.random.randint(0, h - crop_h)
  849. crop_x = np.random.randint(0, w - crop_w)
  850. crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
  851. iou = iou_matrix(
  852. gt_bbox, np.array(
  853. [crop_box], dtype=np.float32))
  854. if iou.max() < thresh:
  855. continue
  856. if self.cover_all_box and iou.min() < thresh:
  857. continue
  858. cropped_box, valid_ids = crop_box_with_center_constraint(
  859. gt_bbox, np.array(
  860. crop_box, dtype=np.float32))
  861. if valid_ids.size > 0:
  862. found = True
  863. break
  864. if found:
  865. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  866. crop_polys = crop_segms(
  867. label_info['gt_poly'],
  868. valid_ids,
  869. np.array(
  870. crop_box, dtype=np.int64),
  871. h,
  872. w)
  873. if [] in crop_polys:
  874. delete_id = list()
  875. valid_polys = list()
  876. for id, crop_poly in enumerate(crop_polys):
  877. if crop_poly == []:
  878. delete_id.append(id)
  879. else:
  880. valid_polys.append(crop_poly)
  881. valid_ids = np.delete(valid_ids, delete_id)
  882. if len(valid_polys) == 0:
  883. return (im, im_info, label_info)
  884. label_info['gt_poly'] = valid_polys
  885. else:
  886. label_info['gt_poly'] = crop_polys
  887. im = crop_image(im, crop_box)
  888. label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
  889. label_info['gt_class'] = np.take(
  890. label_info['gt_class'], valid_ids, axis=0)
  891. im_info['image_shape'] = np.array(
  892. [crop_box[3] - crop_box[1],
  893. crop_box[2] - crop_box[0]]).astype('int32')
  894. if 'gt_score' in label_info:
  895. label_info['gt_score'] = np.take(
  896. label_info['gt_score'], valid_ids, axis=0)
  897. if 'is_crowd' in label_info:
  898. label_info['is_crowd'] = np.take(
  899. label_info['is_crowd'], valid_ids, axis=0)
  900. return (im, im_info, label_info)
  901. return (im, im_info, label_info)
  902. class ArrangeFasterRCNN(DetTransform):
  903. """获取FasterRCNN模型训练/验证/预测所需信息。
  904. Args:
  905. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  906. Raises:
  907. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  908. """
  909. def __init__(self, mode=None):
  910. if mode not in ['train', 'eval', 'test', 'quant']:
  911. raise ValueError(
  912. "mode must be in ['train', 'eval', 'test', 'quant']!")
  913. self.mode = mode
  914. def __call__(self, im, im_info=None, label_info=None):
  915. """
  916. Args:
  917. im (np.ndarray): 图像np.ndarray数据。
  918. im_info (dict, 可选): 存储与图像相关的信息。
  919. label_info (dict, 可选): 存储与标注框相关的信息。
  920. Returns:
  921. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
  922. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
  923. 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
  924. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
  925. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
  926. 图像相当对于原图的resize信息、图像大小信息。
  927. Raises:
  928. TypeError: 形参数据类型不满足需求。
  929. ValueError: 数据长度不匹配。
  930. """
  931. im = permute(im, False)
  932. if self.mode == 'train':
  933. if im_info is None or label_info is None:
  934. raise TypeError(
  935. 'Cannot do ArrangeFasterRCNN! ' +
  936. 'Becasuse the im_info and label_info can not be None!')
  937. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  938. raise ValueError("gt num mismatch: bbox and class.")
  939. im_resize_info = im_info['im_resize_info']
  940. gt_bbox = label_info['gt_bbox']
  941. gt_class = label_info['gt_class']
  942. is_crowd = label_info['is_crowd']
  943. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
  944. elif self.mode == 'eval':
  945. if im_info is None or label_info is None:
  946. raise TypeError(
  947. 'Cannot do ArrangeFasterRCNN! ' +
  948. 'Becasuse the im_info and label_info can not be None!')
  949. im_resize_info = im_info['im_resize_info']
  950. im_id = im_info['im_id']
  951. im_shape = np.array(
  952. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  953. dtype=np.float32)
  954. gt_bbox = label_info['gt_bbox']
  955. gt_class = label_info['gt_class']
  956. is_difficult = label_info['difficult']
  957. outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
  958. is_difficult)
  959. else:
  960. if im_info is None:
  961. raise TypeError('Cannot do ArrangeFasterRCNN! ' +
  962. 'Becasuse the im_info can not be None!')
  963. im_resize_info = im_info['im_resize_info']
  964. im_shape = np.array(
  965. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  966. dtype=np.float32)
  967. outputs = (im, im_resize_info, im_shape)
  968. return outputs
  969. class ArrangeMaskRCNN(DetTransform):
  970. """获取MaskRCNN模型训练/验证/预测所需信息。
  971. Args:
  972. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  973. Raises:
  974. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  975. """
  976. def __init__(self, mode=None):
  977. if mode not in ['train', 'eval', 'test', 'quant']:
  978. raise ValueError(
  979. "mode must be in ['train', 'eval', 'test', 'quant']!")
  980. self.mode = mode
  981. def __call__(self, im, im_info=None, label_info=None):
  982. """
  983. Args:
  984. im (np.ndarray): 图像np.ndarray数据。
  985. im_info (dict, 可选): 存储与图像相关的信息。
  986. label_info (dict, 可选): 存储与标注框相关的信息。
  987. Returns:
  988. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
  989. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
  990. 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
  991. 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
  992. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
  993. Raises:
  994. TypeError: 形参数据类型不满足需求。
  995. ValueError: 数据长度不匹配。
  996. """
  997. im = permute(im, False)
  998. if self.mode == 'train':
  999. if im_info is None or label_info is None:
  1000. raise TypeError(
  1001. 'Cannot do ArrangeTrainMaskRCNN! ' +
  1002. 'Becasuse the im_info and label_info can not be None!')
  1003. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1004. raise ValueError("gt num mismatch: bbox and class.")
  1005. im_resize_info = im_info['im_resize_info']
  1006. gt_bbox = label_info['gt_bbox']
  1007. gt_class = label_info['gt_class']
  1008. is_crowd = label_info['is_crowd']
  1009. assert 'gt_poly' in label_info
  1010. segms = label_info['gt_poly']
  1011. if len(segms) != 0:
  1012. assert len(segms) == is_crowd.shape[0]
  1013. gt_masks = []
  1014. valid = True
  1015. for i in range(len(segms)):
  1016. segm = segms[i]
  1017. gt_segm = []
  1018. if is_crowd[i]:
  1019. gt_segm.append([[0, 0]])
  1020. else:
  1021. for poly in segm:
  1022. if len(poly) == 0:
  1023. valid = False
  1024. break
  1025. gt_segm.append(np.array(poly).reshape(-1, 2))
  1026. if (not valid) or len(gt_segm) == 0:
  1027. break
  1028. gt_masks.append(gt_segm)
  1029. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
  1030. gt_masks)
  1031. else:
  1032. if im_info is None:
  1033. raise TypeError('Cannot do ArrangeMaskRCNN! ' +
  1034. 'Becasuse the im_info can not be None!')
  1035. im_resize_info = im_info['im_resize_info']
  1036. im_shape = np.array(
  1037. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  1038. dtype=np.float32)
  1039. if self.mode == 'eval':
  1040. im_id = im_info['im_id']
  1041. outputs = (im, im_resize_info, im_id, im_shape)
  1042. else:
  1043. outputs = (im, im_resize_info, im_shape)
  1044. return outputs
  1045. class ArrangeYOLOv3(DetTransform):
  1046. """获取YOLOv3模型训练/验证/预测所需信息。
  1047. Args:
  1048. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  1049. Raises:
  1050. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  1051. """
  1052. def __init__(self, mode=None):
  1053. if mode not in ['train', 'eval', 'test', 'quant']:
  1054. raise ValueError(
  1055. "mode must be in ['train', 'eval', 'test', 'quant']!")
  1056. self.mode = mode
  1057. def __call__(self, im, im_info=None, label_info=None):
  1058. """
  1059. Args:
  1060. im (np.ndarray): 图像np.ndarray数据。
  1061. im_info (dict, 可选): 存储与图像相关的信息。
  1062. label_info (dict, 可选): 存储与标注框相关的信息。
  1063. Returns:
  1064. tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
  1065. 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
  1066. 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
  1067. 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
  1068. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
  1069. 分别对应图像np.ndarray数据、图像大小信息。
  1070. Raises:
  1071. TypeError: 形参数据类型不满足需求。
  1072. ValueError: 数据长度不匹配。
  1073. """
  1074. im = permute(im, False)
  1075. if self.mode == 'train':
  1076. if im_info is None or label_info is None:
  1077. raise TypeError(
  1078. 'Cannot do ArrangeYolov3! ' +
  1079. 'Becasuse the im_info and label_info can not be None!')
  1080. im_shape = im_info['image_shape']
  1081. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1082. raise ValueError("gt num mismatch: bbox and class.")
  1083. if len(label_info['gt_bbox']) != len(label_info['gt_score']):
  1084. raise ValueError("gt num mismatch: bbox and score.")
  1085. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1086. gt_class = np.zeros((50, ), dtype=np.int32)
  1087. gt_score = np.zeros((50, ), dtype=im.dtype)
  1088. gt_num = min(50, len(label_info['gt_bbox']))
  1089. if gt_num > 0:
  1090. label_info['gt_class'][:gt_num, 0] = label_info[
  1091. 'gt_class'][:gt_num, 0] - 1
  1092. if -1 not in label_info['gt_class']:
  1093. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1094. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1095. gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
  1096. # parse [x1, y1, x2, y2] to [x, y, w, h]
  1097. gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
  1098. gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
  1099. outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
  1100. elif self.mode == 'eval':
  1101. if im_info is None or label_info is None:
  1102. raise TypeError(
  1103. 'Cannot do ArrangeYolov3! ' +
  1104. 'Becasuse the im_info and label_info can not be None!')
  1105. im_shape = im_info['image_shape']
  1106. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1107. raise ValueError("gt num mismatch: bbox and class.")
  1108. im_id = im_info['im_id']
  1109. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1110. gt_class = np.zeros((50, ), dtype=np.int32)
  1111. difficult = np.zeros((50, ), dtype=np.int32)
  1112. gt_num = min(50, len(label_info['gt_bbox']))
  1113. if gt_num > 0:
  1114. label_info['gt_class'][:gt_num, 0] = label_info[
  1115. 'gt_class'][:gt_num, 0] - 1
  1116. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1117. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1118. difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
  1119. outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
  1120. else:
  1121. if im_info is None:
  1122. raise TypeError('Cannot do ArrangeYolov3! ' +
  1123. 'Becasuse the im_info can not be None!')
  1124. im_shape = im_info['image_shape']
  1125. outputs = (im, im_shape)
  1126. return outputs
  1127. class ComposedRCNNTransforms(Compose):
  1128. """ RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
  1129. 训练阶段:
  1130. 1. 随机以0.5的概率将图像水平翻转
  1131. 2. 图像归一化
  1132. 3. 图像按比例Resize,scale计算方式如下
  1133. scale = min_max_size[0] / short_size_of_image
  1134. if max_size_of_image * scale > min_max_size[1]:
  1135. scale = min_max_size[1] / max_size_of_image
  1136. 4. 将3步骤的长宽进行padding,使得长宽为32的倍数
  1137. 验证阶段:
  1138. 1. 图像归一化
  1139. 2. 图像按比例Resize,scale计算方式同上训练阶段
  1140. 3. 将2步骤的长宽进行padding,使得长宽为32的倍数
  1141. Args:
  1142. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1143. min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
  1144. mean(list): 图像均值
  1145. std(list): 图像方差
  1146. """
  1147. def __init__(self,
  1148. mode,
  1149. min_max_size=[800, 1333],
  1150. mean=[0.485, 0.456, 0.406],
  1151. std=[0.229, 0.224, 0.225]):
  1152. if mode == 'train':
  1153. # 训练时的transforms,包含数据增强
  1154. transforms = [
  1155. RandomHorizontalFlip(prob=0.5), Normalize(
  1156. mean=mean, std=std), ResizeByShort(
  1157. short_size=min_max_size[0], max_size=min_max_size[1]),
  1158. Padding(coarsest_stride=32)
  1159. ]
  1160. else:
  1161. # 验证/预测时的transforms
  1162. transforms = [
  1163. Normalize(
  1164. mean=mean, std=std), ResizeByShort(
  1165. short_size=min_max_size[0], max_size=min_max_size[1]),
  1166. Padding(coarsest_stride=32)
  1167. ]
  1168. super(ComposedRCNNTransforms, self).__init__(transforms)
  1169. class ComposedYOLOTransforms(Compose):
  1170. """YOLOv3模型的图像预处理流程,具体如下,
  1171. 训练阶段:
  1172. 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
  1173. 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
  1174. 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
  1175. 4. 随机裁剪图像
  1176. 5. 将4步骤的输出图像Resize成shape参数的大小
  1177. 6. 随机0.5的概率水平翻转图像
  1178. 7. 图像归一化
  1179. 验证/预测阶段:
  1180. 1. 将图像Resize成shape参数大小
  1181. 2. 图像归一化
  1182. Args:
  1183. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1184. shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
  1185. mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
  1186. mean(list): 图像均值
  1187. std(list): 图像方差
  1188. """
  1189. def __init__(self,
  1190. mode,
  1191. shape=[608, 608],
  1192. mixup_epoch=250,
  1193. mean=[0.485, 0.456, 0.406],
  1194. std=[0.229, 0.224, 0.225]):
  1195. width = shape
  1196. if isinstance(shape, list):
  1197. if shape[0] != shape[1]:
  1198. raise Exception(
  1199. "In YOLOv3 model, width and height should be equal")
  1200. width = shape[0]
  1201. if width % 32 != 0:
  1202. raise Exception(
  1203. "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
  1204. )
  1205. if mode == 'train':
  1206. # 训练时的transforms,包含数据增强
  1207. transforms = [
  1208. MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
  1209. RandomExpand(), RandomCrop(), Resize(
  1210. target_size=width,
  1211. interp='RANDOM'), RandomHorizontalFlip(), Normalize(
  1212. mean=mean, std=std)
  1213. ]
  1214. else:
  1215. # 验证/预测时的transforms
  1216. transforms = [
  1217. Resize(
  1218. target_size=width, interp='CUBIC'), Normalize(
  1219. mean=mean, std=std)
  1220. ]
  1221. super(ComposedYOLOTransforms, self).__init__(transforms)