| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from collections import OrderedDict
- import paddle
- import paddle.nn.functional as F
- from paddle import Tensor, nn
- class NewGELUActivation(nn.Layer):
- """
- Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
- the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
- """
- def forward(self, input: Tensor) -> Tensor:
- return (
- 0.5
- * input
- * (
- 1.0
- + paddle.tanh(
- math.sqrt(2.0 / math.pi)
- * (input + 0.044715 * paddle.pow(input, 3.0))
- )
- )
- )
- class GELUActivation(nn.Layer):
- """
- Original Implementation of the GELU activation function in Google BERT repo when initially created. For
- information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
- torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
- Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
- """
- def __init__(self, use_gelu_python: bool = False):
- super().__init__()
- if use_gelu_python:
- self.act = self._gelu_python
- else:
- self.act = nn.functional.gelu
- def _gelu_python(self, input: Tensor) -> Tensor:
- return input * 0.5 * (1.0 + paddle.erf(input / math.sqrt(2.0)))
- def forward(self, input: Tensor) -> Tensor:
- return self.act(input)
- class FastGELUActivation(nn.Layer):
- """
- Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
- """
- def forward(self, input: Tensor) -> Tensor:
- return (
- 0.5
- * input
- * (
- 1.0
- + paddle.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input))
- )
- )
- class QuickGELUActivation(nn.Layer):
- """
- Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
- """
- def forward(self, input: Tensor) -> Tensor:
- return input * F.sigmoid(1.702 * input)
- class ClippedGELUActivation(nn.Layer):
- """
- Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
- it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
- https://arxiv.org/abs/2004.09602.
- Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
- initially created.
- For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
- torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
- """
- def __init__(self, min: float, max: float):
- if min > max:
- raise ValueError(f"min should be < max (got min: {min}, max: {max})")
- super().__init__()
- self.min = min
- self.max = max
- def forward(self, x: Tensor) -> Tensor:
- return paddle.clip(gelu(x), self.min, self.max)
- class SiLUActivation(nn.Layer):
- """
- See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
- Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
- Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
- Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
- later.
- """
- def forward(self, input: Tensor) -> Tensor:
- return F.silu(input)
- class MishActivation(nn.Layer):
- """
- See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
- visit the official repository for the paper: https://github.com/digantamisra98/Mish
- """
- def forward(self, input: Tensor) -> Tensor:
- return F.mish(input)
- class LinearActivation(nn.Layer):
- """
- Applies the linear activation function, i.e. forwarding input directly to output.
- """
- def forward(self, input: Tensor) -> Tensor:
- return input
- class ClassInstantier(OrderedDict):
- def __getitem__(self, key):
- content = super().__getitem__(key)
- cls, kwargs = content if isinstance(content, tuple) else (content, {})
- return cls(**kwargs)
- ACT2CLS = {
- "gelu": GELUActivation,
- "gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
- "gelu_fast": FastGELUActivation,
- "gelu_new": NewGELUActivation,
- # HACK
- "gelu_pytorch_tanh": NewGELUActivation,
- "gelu_python": (GELUActivation, {"use_gelu_python": True}),
- "linear": LinearActivation,
- "mish": MishActivation,
- "quick_gelu": QuickGELUActivation,
- "relu": nn.ReLU,
- "relu6": nn.ReLU6,
- "sigmoid": nn.Sigmoid,
- "silu": SiLUActivation,
- "swish": SiLUActivation,
- "tanh": nn.Tanh,
- }
- ACT2FN = ClassInstantier(ACT2CLS)
- def get_activation(activation_string):
- if activation_string in ACT2FN:
- return ACT2FN[activation_string]
- else:
- raise KeyError(
- f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}"
- )
- gelu_python = get_activation("gelu_python")
- gelu_new = get_activation("gelu_new")
- gelu = get_activation("gelu")
- gelu_fast = get_activation("gelu_fast")
- quick_gelu = get_activation("quick_gelu")
- silu = get_activation("silu")
- mish = get_activation("mish")
- linear_act = get_activation("linear")
|