| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/core/fd_tensor.h"
- #include "ultra_infer/utils/axis_utils.h"
- #include "unsupported/Eigen/CXX11/Tensor"
- #include <algorithm>
- #include <memory>
- #include <vector>
- namespace ultra_infer {
- namespace function {
- // EigenDim converts shape into Eigen::DSizes.
- template <int D> struct EigenDim {
- using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
- static Type From(const std::vector<int64_t> &dims) {
- Type ret;
- for (int64_t d = 0; d < dims.size(); d++) {
- ret[d] = dims[d];
- }
- return ret;
- }
- };
- // Interpret FDTensor as EigenTensor and EigenConstTensor.
- template <typename T, size_t D, int MajorType = Eigen::RowMajor,
- typename IndexType = Eigen::DenseIndex>
- struct EigenTensor {
- using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
- using ConstType =
- Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
- static Type From(FDTensor &tensor,
- const std::vector<int64_t> &dims) { // NOLINT
- return Type(reinterpret_cast<T *>(tensor.Data()), EigenDim<D>::From(dims));
- }
- static Type From(FDTensor &tensor) { // NOLINT
- return From(tensor, tensor.shape);
- } // NOLINT
- static ConstType From(const FDTensor &tensor,
- const std::vector<int64_t> &dims) {
- return ConstType(reinterpret_cast<const T *>(tensor.Data()),
- EigenDim<D>::From(dims));
- }
- static ConstType From(const FDTensor &tensor) {
- return From(tensor, tensor.shape);
- }
- };
- template <typename T, int MajorType = Eigen::RowMajor,
- typename IndexType = Eigen::DenseIndex>
- struct EigenScalar {
- // Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
- using Type = Eigen::TensorMap<
- Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
- using ConstType = Eigen::TensorMap<
- Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
- static Type From(FDTensor &tensor) {
- return Type(reinterpret_cast<T *>(tensor.Data()));
- } // NOLINT
- static ConstType From(const FDTensor &tensor) {
- return ConstType(reinterpret_cast<const T *>(tensor.Data()));
- }
- };
- template <typename T, int MajorType = Eigen::RowMajor,
- typename IndexType = Eigen::DenseIndex>
- struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
- // Flatten reshapes a Tensor into an EigenVector.
- static typename EigenVector::Type Flatten(FDTensor &tensor) { // NOLINT
- return EigenVector::From(tensor, {tensor.Numel()});
- }
- static typename EigenVector::ConstType
- Flatten(const FDTensor &tensor) { // NOLINT
- return EigenVector::From(tensor, {tensor.Numel()});
- }
- };
- template <typename T, int MajorType = Eigen::RowMajor,
- typename IndexType = Eigen::DenseIndex>
- struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
- static typename EigenMatrix::Type Reshape(FDTensor &tensor, // NOLINT
- int num_col_dims) {
- int rank = tensor.shape.size();
- FDASSERT((num_col_dims > 0 && num_col_dims < rank),
- "Input dimension number(num_col_dims) must be between 0 and %d, "
- "but received number is %d.",
- rank, num_col_dims);
- const int n = SizeToAxis(num_col_dims, tensor.shape);
- const int d = SizeFromAxis(num_col_dims, tensor.shape);
- return EigenMatrix::From(tensor, {n, d});
- }
- static typename EigenMatrix::ConstType Reshape(const FDTensor &tensor,
- int num_col_dims) {
- int rank = tensor.shape.size();
- FDASSERT((num_col_dims > 0 && num_col_dims < rank),
- "Input dimension number(num_col_dims) must be between 0 and %d, "
- "but received number is %d.",
- rank, num_col_dims);
- const int n = SizeToAxis(num_col_dims, tensor.shape);
- const int d = SizeFromAxis(num_col_dims, tensor.shape);
- return EigenMatrix::From(tensor, {n, d});
- }
- };
- class EigenDeviceWrapper {
- public:
- static std::shared_ptr<EigenDeviceWrapper> GetInstance();
- const Eigen::DefaultDevice *GetDevice() const;
- private:
- Eigen::DefaultDevice device_;
- static std::shared_ptr<EigenDeviceWrapper> instance_;
- };
- } // namespace function
- } // namespace ultra_infer
|