| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/classification/ppcls/preprocessor.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace classification {
- PaddleClasPreprocessor::PaddleClasPreprocessor(const std::string &config_file) {
- this->config_file_ = config_file;
- FDASSERT(BuildPreprocessPipelineFromConfig(),
- "Failed to create PaddleClasPreprocessor.");
- initialized_ = true;
- }
- bool PaddleClasPreprocessor::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
- processors_.push_back(std::make_shared<BGR2RGB>());
- for (const auto &op : preprocess_cfg) {
- FDASSERT(op.IsMap(),
- "Require the transform information in yaml be Map type.");
- auto op_name = op.begin()->first.as<std::string>();
- if (op_name == "ResizeImage") {
- if (op.begin()->second["resize_short"]) {
- int target_size = op.begin()->second["resize_short"].as<int>();
- bool use_scale = false;
- int interp = 1;
- processors_.push_back(
- std::make_shared<ResizeByShort>(target_size, 1, use_scale));
- } else if (op.begin()->second["size"]) {
- int width = 0;
- int height = 0;
- if (op.begin()->second["size"].IsScalar()) {
- auto size = op.begin()->second["size"].as<int>();
- width = size;
- height = size;
- } else {
- auto size = op.begin()->second["size"].as<std::vector<int>>();
- width = size[0];
- height = size[1];
- }
- processors_.push_back(
- std::make_shared<Resize>(width, height, -1.0, -1.0, 1, false));
- } else {
- FDERROR << "Invalid params for ResizeImage for both 'size' and "
- "'resize_short' are None"
- << std::endl;
- }
- } else if (op_name == "CropImage") {
- int width = op.begin()->second["size"].as<int>();
- int height = op.begin()->second["size"].as<int>();
- processors_.push_back(std::make_shared<CenterCrop>(width, height));
- } else if (op_name == "NormalizeImage") {
- if (!disable_normalize_) {
- auto mean = op.begin()->second["mean"].as<std::vector<float>>();
- auto std = op.begin()->second["std"].as<std::vector<float>>();
- const auto &scale_origin = op.begin()->second["scale"];
- float scale;
- if (scale_origin.as<std::string>() == "1/255") {
- scale = 1.0f / 255.0f;
- } else {
- scale = scale_origin.as<float>();
- }
- processors_.push_back(std::make_shared<Normalize>(
- mean, std, true, std::vector<float>(mean.size(), 0.0f),
- std::vector<float>(mean.size(), 1.0f / scale)));
- }
- } else if (op_name == "ToCHWImage") {
- if (!disable_permute_) {
- processors_.push_back(std::make_shared<HWC2CHW>());
- }
- } else {
- FDERROR << "Unexcepted preprocess operator: " << op_name << "."
- << std::endl;
- return false;
- }
- }
- // Fusion will improve performance
- FuseTransforms(&processors_);
- return true;
- }
- void PaddleClasPreprocessor::DisableNormalize() {
- this->disable_normalize_ = true;
- // the DisableNormalize function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- void PaddleClasPreprocessor::DisablePermute() {
- this->disable_permute_ = true;
- // the DisablePermute function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- bool PaddleClasPreprocessor::Apply(FDMatBatch *image_batch,
- std::vector<FDTensor> *outputs) {
- if (!initialized_) {
- FDERROR << "The preprocessor is not initialized." << std::endl;
- return false;
- }
- for (size_t j = 0; j < processors_.size(); ++j) {
- image_batch->proc_lib = proc_lib_;
- if (initial_resize_on_cpu_ && j == 0 &&
- processors_[j]->Name().find("Resize") == 0) {
- image_batch->proc_lib = ProcLib::OPENCV;
- }
- if (!(*(processors_[j].get()))(image_batch)) {
- FDERROR << "Failed to process image in " << processors_[j]->Name() << "."
- << std::endl;
- return false;
- }
- }
- outputs->resize(1);
- FDTensor *tensor = image_batch->Tensor();
- (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
- tensor->Data(), tensor->device,
- tensor->device_id);
- return true;
- }
- } // namespace classification
- } // namespace vision
- } // namespace ultra_infer
|