| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- /*! @brief NanoDetPlus model object used when to load a NanoDetPlus model
- * exported by NanoDet.
- */
- class ULTRAINFER_DECL NanoDetPlus : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./nanodet_plus_320.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- NanoDetPlus(const std::string &model_file,
- const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- /// Get model's name
- std::string ModelName() const { return "nanodet"; }
- /** \brief Predict the detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output detection result
- * will be written to this structure \param[in] conf_threshold confidence
- * threshold for postprocessing, default is 0.35 \param[in] nms_iou_threshold
- * iou threshold for NMS, default is 0.5 \return true if the prediction
- * succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, DetectionResult *result,
- float conf_threshold = 0.35f,
- float nms_iou_threshold = 0.5f);
- /*! @brief
- Argument for image preprocessing step, tuple of input size (width, height),
- default (320, 320)
- */
- std::vector<int> size;
- // padding value, size should be the same as channels
- std::vector<float> padding_value;
- // keep aspect ratio or not when perform resize operation.
- // This option is set as `false` by default in NanoDet-Plus
- bool keep_ratio;
- // downsample strides for NanoDet-Plus to generate anchors,
- // will take (8, 16, 32, 64) as default values
- std::vector<int> downsample_strides;
- // for offsetting the boxes by classes when using NMS, default 4096
- float max_wh;
- /*! @brief
- Argument for image postprocessing step, reg_max for GFL regression, default 7
- */
- int reg_max;
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info);
- bool Postprocess(FDTensor &infer_result, DetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold);
- bool IsDynamicInput() const { return is_dynamic_input_; }
- // whether to inference with dynamic shape (e.g ONNX export with dynamic shape
- // or not.)
- // RangiLyu/nanodet official 'export_onnx.py' script will export static ONNX
- // by default.
- // This value will auto check by ultra_infer after the internal Runtime
- // initialized.
- bool is_dynamic_input_;
- };
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|