yolov7end2end_trt.h 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #pragma once
  15. #include "ultra_infer/ultra_infer_model.h"
  16. #include "ultra_infer/vision/common/processors/transform.h"
  17. #include "ultra_infer/vision/common/result.h"
  18. namespace ultra_infer {
  19. namespace vision {
  20. namespace detection {
  21. /*! @brief YOLOv7End2EndTRT model object used when to load a YOLOv7End2EndTRT
  22. * model exported by YOLOv7.
  23. */
  24. class ULTRAINFER_DECL YOLOv7End2EndTRT : public UltraInferModel {
  25. public:
  26. /** \brief Set path of model file and the configuration of runtime.
  27. *
  28. * \param[in] model_file Path of model file, e.g ./yolov7end2end_trt.onnx
  29. * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
  30. * if the model format is ONNX, this parameter will be ignored \param[in]
  31. * custom_option RuntimeOption for inference, the default will use cpu, and
  32. * choose the backend defined in "valid_cpu_backends" \param[in] model_format
  33. * Model format of the loaded model, default is ONNX format
  34. */
  35. YOLOv7End2EndTRT(const std::string &model_file,
  36. const std::string &params_file = "",
  37. const RuntimeOption &custom_option = RuntimeOption(),
  38. const ModelFormat &model_format = ModelFormat::ONNX);
  39. ~YOLOv7End2EndTRT();
  40. virtual std::string ModelName() const { return "yolov7end2end_trt"; }
  41. /** \brief Predict the detection result for an input image
  42. *
  43. * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
  44. * with layout HWC, BGR format \param[in] result The output detection result
  45. * will be written to this structure \param[in] conf_threshold confidence
  46. * threshold for postprocessing, default is 0.25 \return true if the
  47. * prediction succeeded, otherwise false
  48. */
  49. virtual bool Predict(cv::Mat *im, DetectionResult *result,
  50. float conf_threshold = 0.25);
  51. void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
  52. /*! @brief
  53. Argument for image preprocessing step, tuple of (width, height), decide the
  54. target size after resize, default size = {640, 640}
  55. */
  56. std::vector<int> size;
  57. // padding value, size should be the same as channels
  58. std::vector<float> padding_value;
  59. // only pad to the minimum rectangle which height and width is times of stride
  60. bool is_mini_pad;
  61. // while is_mini_pad = false and is_no_pad = true,
  62. // will resize the image to the set size
  63. bool is_no_pad;
  64. // if is_scale_up is false, the input image only can be zoom out,
  65. // the maximum resize scale cannot exceed 1.0
  66. bool is_scale_up;
  67. // padding stride, for is_mini_pad
  68. int stride;
  69. private:
  70. bool Initialize();
  71. bool Preprocess(Mat *mat, FDTensor *output,
  72. std::map<std::string, std::array<float, 2>> *im_info);
  73. bool CudaPreprocess(Mat *mat, FDTensor *output,
  74. std::map<std::string, std::array<float, 2>> *im_info);
  75. bool Postprocess(std::vector<FDTensor> &infer_results,
  76. DetectionResult *result,
  77. const std::map<std::string, std::array<float, 2>> &im_info,
  78. float conf_threshold);
  79. void LetterBox(Mat *mat, const std::vector<int> &size,
  80. const std::vector<float> &color, bool _auto,
  81. bool scale_fill = false, bool scale_up = true,
  82. int stride = 32);
  83. bool is_dynamic_input_;
  84. // CUDA host buffer for input image
  85. uint8_t *input_img_cuda_buffer_host_ = nullptr;
  86. // CUDA device buffer for input image
  87. uint8_t *input_img_cuda_buffer_device_ = nullptr;
  88. // CUDA device buffer for TRT input tensor
  89. float *input_tensor_cuda_buffer_device_ = nullptr;
  90. // Whether to use CUDA preprocessing
  91. bool use_cuda_preprocessing_ = false;
  92. // CUDA stream
  93. void *cuda_stream_ = nullptr;
  94. };
  95. } // namespace detection
  96. } // namespace vision
  97. } // namespace ultra_infer