yolov8.h 3.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #pragma once
  15. #include "ultra_infer/ultra_infer_model.h"
  16. #include "ultra_infer/vision/detection/contrib/yolov8/postprocessor.h"
  17. #include "ultra_infer/vision/detection/contrib/yolov8/preprocessor.h"
  18. namespace ultra_infer {
  19. namespace vision {
  20. namespace detection {
  21. /*! @brief YOLOv8 model object used when to load a YOLOv8 model exported by
  22. * YOLOv8.
  23. */
  24. class ULTRAINFER_DECL YOLOv8 : public UltraInferModel {
  25. public:
  26. /** \brief Set path of model file and the configuration of runtime.
  27. *
  28. * \param[in] model_file Path of model file, e.g ./yolov8.onnx
  29. * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
  30. * if the model format is ONNX, this parameter will be ignored \param[in]
  31. * custom_option RuntimeOption for inference, the default will use cpu, and
  32. * choose the backend defined in "valid_cpu_backends" \param[in] model_format
  33. * Model format of the loaded model, default is ONNX format
  34. */
  35. YOLOv8(const std::string &model_file, const std::string &params_file = "",
  36. const RuntimeOption &custom_option = RuntimeOption(),
  37. const ModelFormat &model_format = ModelFormat::ONNX);
  38. std::string ModelName() const { return "yolov8"; }
  39. /** \brief Predict the detection result for an input image
  40. *
  41. * \param[in] img The input image data, comes from cv::imread(), is a 3-D
  42. * array with layout HWC, BGR format \param[in] result The output detection
  43. * result will be written to this structure \return true if the prediction
  44. * succeeded, otherwise false
  45. */
  46. virtual bool Predict(const cv::Mat &img, DetectionResult *result);
  47. /** \brief Predict the detection results for a batch of input images
  48. *
  49. * \param[in] imgs, The input image list, each element comes from cv::imread()
  50. * \param[in] results The output detection result list
  51. * \return true if the prediction succeeded, otherwise false
  52. */
  53. virtual bool BatchPredict(const std::vector<cv::Mat> &imgs,
  54. std::vector<DetectionResult> *results);
  55. /// Get preprocessor reference of YOLOv8
  56. virtual YOLOv8Preprocessor &GetPreprocessor() { return preprocessor_; }
  57. /// Get postprocessor reference of YOLOv8
  58. virtual YOLOv8Postprocessor &GetPostprocessor() { return postprocessor_; }
  59. protected:
  60. bool Initialize();
  61. YOLOv8Preprocessor preprocessor_;
  62. YOLOv8Postprocessor postprocessor_;
  63. };
  64. } // namespace detection
  65. } // namespace vision
  66. } // namespace ultra_infer