| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/ppdet/postprocessor.h"
- #include "ultra_infer/vision/utils/utils.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- bool PaddleDetPostprocessor::ProcessMask(
- const FDTensor &tensor, std::vector<DetectionResult> *results) {
- auto shape = tensor.Shape();
- int64_t out_mask_w = shape[2];
- int64_t out_mask_numel = shape[1] * shape[2];
- const auto *data = reinterpret_cast<const uint32_t *>(tensor.CpuData());
- int index = 0;
- for (int i = 0; i < results->size(); ++i) {
- (*results)[i].contain_masks = true;
- (*results)[i].masks.resize((*results)[i].boxes.size());
- for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
- int x1 = static_cast<int>(round((*results)[i].boxes[j][0]));
- int y1 = static_cast<int>(round((*results)[i].boxes[j][1]));
- int x2 = static_cast<int>(round((*results)[i].boxes[j][2]));
- int y2 = static_cast<int>(round((*results)[i].boxes[j][3]));
- int keep_mask_h = y2 - y1;
- int keep_mask_w = x2 - x1;
- int keep_mask_numel = keep_mask_h * keep_mask_w;
- (*results)[i].masks[j].Resize(keep_mask_numel);
- (*results)[i].masks[j].shape = {keep_mask_h, keep_mask_w};
- const uint32_t *current_ptr = data + index * out_mask_numel;
- auto *keep_mask_ptr =
- reinterpret_cast<uint32_t *>((*results)[i].masks[j].Data());
- for (int row = y1; row < y2; ++row) {
- size_t keep_nbytes_in_col = keep_mask_w * sizeof(uint32_t);
- const uint32_t *out_row_start_ptr = current_ptr + row * out_mask_w + x1;
- uint32_t *keep_row_start_ptr = keep_mask_ptr + (row - y1) * keep_mask_w;
- std::memcpy(keep_row_start_ptr, out_row_start_ptr, keep_nbytes_in_col);
- }
- index += 1;
- }
- }
- return true;
- }
- bool PaddleDetPostprocessor::ProcessWithNMS(
- const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- // Get number of boxes for each input image
- std::vector<int> num_boxes(tensors[1].shape[0]);
- int total_num_boxes = 0;
- if (tensors[1].dtype == FDDataType::INT32) {
- const auto *data = static_cast<const int32_t *>(tensors[1].CpuData());
- for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
- num_boxes[i] = static_cast<int>(data[i]);
- total_num_boxes += num_boxes[i];
- }
- } else if (tensors[1].dtype == FDDataType::INT64) {
- const auto *data = static_cast<const int64_t *>(tensors[1].CpuData());
- for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
- num_boxes[i] = static_cast<int>(data[i]);
- total_num_boxes += num_boxes[i];
- }
- }
- // Special case for TensorRT, it has fixed output shape of NMS
- // So there's invalid boxes in its' output boxes
- int num_output_boxes = static_cast<int>(tensors[0].Shape()[0]);
- bool contain_invalid_boxes = false;
- if (total_num_boxes != num_output_boxes) {
- if (num_output_boxes % num_boxes.size() == 0) {
- contain_invalid_boxes = true;
- } else {
- FDERROR << "Cannot handle the output data for this model, unexpected "
- "situation."
- << std::endl;
- return false;
- }
- }
- // Get boxes for each input image
- results->resize(num_boxes.size());
- if (tensors[0].shape[0] == 0) {
- // No detected boxes
- return true;
- }
- const auto *box_data = static_cast<const float *>(tensors[0].CpuData());
- int offset = 0;
- for (size_t i = 0; i < num_boxes.size(); ++i) {
- const float *ptr = box_data + offset;
- (*results)[i].Reserve(num_boxes[i]);
- for (size_t j = 0; j < num_boxes[i]; ++j) {
- (*results)[i].label_ids.push_back(
- static_cast<int32_t>(round(ptr[j * 6])));
- (*results)[i].scores.push_back(ptr[j * 6 + 1]);
- (*results)[i].boxes.emplace_back(std::array<float, 4>(
- {ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
- }
- if (contain_invalid_boxes) {
- offset += static_cast<int>(num_output_boxes * 6 / num_boxes.size());
- } else {
- offset += static_cast<int>(num_boxes[i] * 6);
- }
- }
- return true;
- }
- bool PaddleDetPostprocessor::ProcessWithoutNMS(
- const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- int boxes_index = 0;
- int scores_index = 1;
- // Judge the index of the input Tensor
- if (tensors[0].shape[1] == tensors[1].shape[2]) {
- boxes_index = 0;
- scores_index = 1;
- } else if (tensors[0].shape[2] == tensors[1].shape[1]) {
- boxes_index = 1;
- scores_index = 0;
- } else {
- FDERROR << "The shape of boxes and scores should be [batch, boxes_num, "
- "4], [batch, classes_num, boxes_num]"
- << std::endl;
- return false;
- }
- // do multi class nms
- multi_class_nms_.Compute(
- static_cast<const float *>(tensors[boxes_index].Data()),
- static_cast<const float *>(tensors[scores_index].Data()),
- tensors[boxes_index].shape, tensors[scores_index].shape);
- auto num_boxes = multi_class_nms_.out_num_rois_data;
- auto box_data =
- static_cast<const float *>(multi_class_nms_.out_box_data.data());
- // Get boxes for each input image
- results->resize(num_boxes.size());
- int offset = 0;
- for (size_t i = 0; i < num_boxes.size(); ++i) {
- const float *ptr = box_data + offset;
- (*results)[i].Reserve(num_boxes[i]);
- for (size_t j = 0; j < num_boxes[i]; ++j) {
- (*results)[i].label_ids.push_back(
- static_cast<int32_t>(round(ptr[j * 6])));
- (*results)[i].scores.push_back(ptr[j * 6 + 1]);
- (*results)[i].boxes.emplace_back(std::array<float, 4>(
- {ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
- }
- offset += (num_boxes[i] * 6);
- }
- // do scale
- if (GetScaleFactor()[0] != 0) {
- for (auto &result : *results) {
- for (auto &box : result.boxes) {
- box[0] /= GetScaleFactor()[1];
- box[1] /= GetScaleFactor()[0];
- box[2] /= GetScaleFactor()[1];
- box[3] /= GetScaleFactor()[0];
- }
- }
- }
- return true;
- }
- bool PaddleDetPostprocessor::ProcessSolov2(
- const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- if (tensors.size() != 4) {
- FDERROR << "The size of tensors for solov2 must be 4." << std::endl;
- return false;
- }
- if (tensors[0].shape[0] != 1) {
- FDERROR << "SOLOv2 temporarily only supports batch size is 1." << std::endl;
- return false;
- }
- results->clear();
- results->resize(1);
- (*results)[0].contain_masks = true;
- // tensor[0] means bbox data
- const auto bbox_data = static_cast<const int *>(tensors[0].CpuData());
- // tensor[1] means label data
- const auto label_data_ = static_cast<const int64_t *>(tensors[1].CpuData());
- // tensor[2] means score data
- const auto score_data_ = static_cast<const float *>(tensors[2].CpuData());
- // tensor[3] is mask data and its shape is the same as that of the image.
- const auto mask_data_ = static_cast<const uint8_t *>(tensors[3].CpuData());
- int rows = static_cast<int>(tensors[3].shape[1]);
- int cols = static_cast<int>(tensors[3].shape[2]);
- for (int bbox_id = 0; bbox_id < bbox_data[0]; ++bbox_id) {
- if (score_data_[bbox_id] >= multi_class_nms_.score_threshold) {
- DetectionResult &result_item = (*results)[0];
- result_item.label_ids.emplace_back(label_data_[bbox_id]);
- result_item.scores.emplace_back(score_data_[bbox_id]);
- std::vector<int> global_mask;
- for (int k = 0; k < rows * cols; ++k) {
- global_mask.push_back(
- static_cast<int>(mask_data_[k + bbox_id * rows * cols]));
- }
- // find minimize bounding box from mask
- cv::Mat mask(rows, cols, CV_32SC1);
- std::memcpy(mask.data, global_mask.data(),
- global_mask.size() * sizeof(int));
- cv::Mat mask_fp;
- mask.convertTo(mask_fp, CV_32FC1);
- cv::Mat rowSum;
- cv::Mat colSum;
- std::vector<float> sum_of_row(rows);
- std::vector<float> sum_of_col(cols);
- cv::reduce(mask_fp, colSum, 0, cv::REDUCE_SUM, CV_32FC1);
- cv::reduce(mask_fp, rowSum, 1, cv::REDUCE_SUM, CV_32FC1);
- for (int row_id = 0; row_id < rows; ++row_id) {
- sum_of_row[row_id] = rowSum.at<float>(row_id, 0);
- }
- for (int col_id = 0; col_id < cols; ++col_id) {
- sum_of_col[col_id] = colSum.at<float>(0, col_id);
- }
- auto it = std::find_if(sum_of_row.begin(), sum_of_row.end(),
- [](int x) { return x > 0.5; });
- float y1 = std::distance(sum_of_row.begin(), it);
- auto it2 = std::find_if(sum_of_col.begin(), sum_of_col.end(),
- [](int x) { return x > 0.5; });
- float x1 = std::distance(sum_of_col.begin(), it2);
- auto rit = std::find_if(sum_of_row.rbegin(), sum_of_row.rend(),
- [](int x) { return x > 0.5; });
- float y2 = std::distance(rit, sum_of_row.rend());
- auto rit2 = std::find_if(sum_of_col.rbegin(), sum_of_col.rend(),
- [](int x) { return x > 0.5; });
- float x2 = std::distance(rit2, sum_of_col.rend());
- result_item.boxes.emplace_back(std::array<float, 4>({x1, y1, x2, y2}));
- }
- }
- return true;
- }
- bool PaddleDetPostprocessor::ProcessPPYOLOER(
- const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- if (tensors.size() != 2) {
- FDERROR << "The size of tensors for PPYOLOER must be 2." << std::endl;
- return false;
- }
- int boxes_index = 0;
- int scores_index = 1;
- multi_class_nms_rotated_.Compute(
- static_cast<const float *>(tensors[boxes_index].Data()),
- static_cast<const float *>(tensors[scores_index].Data()),
- tensors[boxes_index].shape, tensors[scores_index].shape);
- auto num_boxes = multi_class_nms_rotated_.out_num_rois_data;
- auto box_data =
- static_cast<const float *>(multi_class_nms_rotated_.out_box_data.data());
- // Get boxes for each input image
- results->resize(num_boxes.size());
- int offset = 0;
- for (size_t i = 0; i < num_boxes.size(); ++i) {
- const float *ptr = box_data + offset;
- (*results)[i].Reserve(num_boxes[i]);
- for (size_t j = 0; j < num_boxes[i]; ++j) {
- (*results)[i].label_ids.push_back(
- static_cast<int32_t>(round(ptr[j * 10])));
- (*results)[i].scores.push_back(ptr[j * 10 + 1]);
- (*results)[i].rotated_boxes.push_back(std::array<float, 8>(
- {ptr[j * 10 + 2], ptr[j * 10 + 3], ptr[j * 10 + 4], ptr[j * 10 + 5],
- ptr[j * 10 + 6], ptr[j * 10 + 7], ptr[j * 10 + 8],
- ptr[j * 10 + 9]}));
- }
- offset += (num_boxes[i] * 10);
- }
- // do scale
- if (GetScaleFactor()[0] != 0) {
- for (auto &result : *results) {
- for (int i = 0; i < result.rotated_boxes.size(); i++) {
- for (int j = 0; j < 8; j++) {
- auto scale = i % 2 == 0 ? GetScaleFactor()[1] : GetScaleFactor()[0];
- result.rotated_boxes[i][j] /= float(scale);
- }
- }
- }
- }
- return true;
- }
- bool PaddleDetPostprocessor::Run(const std::vector<FDTensor> &tensors,
- std::vector<DetectionResult> *results) {
- if (arch_ == "SOLOv2") {
- // process for SOLOv2
- ProcessSolov2(tensors, results);
- // The fourth output of solov2 is mask
- return ProcessMask(tensors[3], results);
- } else {
- if (tensors[0].Shape().size() == 3 &&
- tensors[0].Shape()[2] == 8) { // PPYOLOER
- return ProcessPPYOLOER(tensors, results);
- }
- // Do process according to whether NMS exists.
- if (with_nms_) {
- if (!ProcessWithNMS(tensors, results)) {
- return false;
- }
- } else {
- if (!ProcessWithoutNMS(tensors, results)) {
- return false;
- }
- }
- // for only detection
- if (tensors.size() <= 2) {
- return true;
- }
- // for maskrcnn
- if (tensors[2].Shape()[0] != tensors[0].Shape()[0]) {
- FDERROR << "The first dimension of output mask tensor:"
- << tensors[2].Shape()[0]
- << " is not equal to the first dimension of output boxes tensor:"
- << tensors[0].Shape()[0] << "." << std::endl;
- return false;
- }
- // The third output of mask-rcnn is mask
- return ProcessMask(tensors[2], results);
- }
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|