| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/ppdet/preprocessor.h"
- #include "ultra_infer/function/concat.h"
- #include "ultra_infer/function/pad.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- PaddleDetPreprocessor::PaddleDetPreprocessor(const std::string &config_file) {
- this->config_file_ = config_file;
- FDASSERT(BuildPreprocessPipelineFromConfig(),
- "Failed to create PaddleDetPreprocessor.");
- initialized_ = true;
- }
- bool PaddleDetPreprocessor::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- // read for postprocess
- if (cfg["arch"].IsDefined()) {
- arch_ = cfg["arch"].as<std::string>();
- } else {
- FDERROR << "Please set model arch,"
- << "support value : SOLOv2, YOLO, SSD, RetinaNet, RCNN, Face."
- << std::endl;
- return false;
- }
- // read for preprocess
- processors_.push_back(std::make_shared<BGR2RGB>());
- bool has_permute = false;
- for (const auto &op : cfg["Preprocess"]) {
- std::string op_name = op["type"].as<std::string>();
- if (op_name == "NormalizeImage") {
- if (!disable_normalize_) {
- auto mean = op["mean"].as<std::vector<float>>();
- auto std = op["std"].as<std::vector<float>>();
- bool is_scale = true;
- if (op["is_scale"]) {
- is_scale = op["is_scale"].as<bool>();
- }
- std::string norm_type = "mean_std";
- if (op["norm_type"]) {
- norm_type = op["norm_type"].as<std::string>();
- }
- if (norm_type != "mean_std") {
- std::fill(mean.begin(), mean.end(), 0.0);
- std::fill(std.begin(), std.end(), 1.0);
- }
- processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
- }
- } else if (op_name == "Resize") {
- bool keep_ratio = op["keep_ratio"].as<bool>();
- auto target_size = op["target_size"].as<std::vector<int>>();
- int interp = op["interp"].as<int>();
- FDASSERT(target_size.size() == 2,
- "Require size of target_size be 2, but now it's %lu.",
- target_size.size());
- if (!keep_ratio) {
- int width = target_size[1];
- int height = target_size[0];
- processors_.push_back(
- std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
- } else {
- int min_target_size = std::min(target_size[0], target_size[1]);
- int max_target_size = std::max(target_size[0], target_size[1]);
- std::vector<int> max_size;
- if (max_target_size > 0) {
- max_size.push_back(max_target_size);
- max_size.push_back(max_target_size);
- }
- processors_.push_back(std::make_shared<ResizeByShort>(
- min_target_size, interp, true, max_size));
- }
- } else if (op_name == "Permute") {
- // Do nothing, do permute as the last operation
- has_permute = true;
- continue;
- } else if (op_name == "Pad") {
- auto size = op["size"].as<std::vector<int>>();
- auto value = op["fill_value"].as<std::vector<float>>();
- processors_.push_back(
- std::make_shared<PadToSize>(size[1], size[0], value));
- } else if (op_name == "PadStride") {
- auto stride = op["stride"].as<int>();
- processors_.push_back(
- std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
- } else {
- FDERROR << "Unexcepted preprocess operator: " << op_name << "."
- << std::endl;
- return false;
- }
- }
- if (!disable_permute_) {
- if (has_permute) {
- // permute = cast<float> + HWC2CHW
- processors_.push_back(std::make_shared<Cast>("float"));
- processors_.push_back(std::make_shared<HWC2CHW>());
- }
- }
- // Fusion will improve performance
- FuseTransforms(&processors_);
- return true;
- }
- bool PaddleDetPreprocessor::Apply(FDMatBatch *image_batch,
- std::vector<FDTensor> *outputs) {
- if (!initialized_) {
- FDERROR << "The preprocessor is not initialized." << std::endl;
- return false;
- }
- if (image_batch->mats->empty()) {
- FDERROR << "The size of input images should be greater than 0."
- << std::endl;
- return false;
- }
- // There are 3 outputs, image, scale_factor, im_shape
- // But im_shape is not used for all the PaddleDetection models
- // So preprocessor will output the 3 FDTensors, and how to use `im_shape`
- // is decided by the model itself
- outputs->resize(3);
- int batch = static_cast<int>(image_batch->mats->size());
- // Allocate memory for scale_factor
- (*outputs)[1].Resize({batch, 2}, FDDataType::FP32);
- // Allocate memory for im_shape
- (*outputs)[2].Resize({batch, 2}, FDDataType::FP32);
- // Record the max size for a batch of input image
- // All the tensor will pad to the max size to compose a batched tensor
- std::vector<int> max_hw({-1, -1});
- auto *scale_factor_ptr =
- reinterpret_cast<float *>((*outputs)[1].MutableData());
- auto *im_shape_ptr = reinterpret_cast<float *>((*outputs)[2].MutableData());
- for (size_t i = 0; i < image_batch->mats->size(); ++i) {
- FDMat *mat = &(image_batch->mats->at(i));
- int origin_w = mat->Width();
- int origin_h = mat->Height();
- scale_factor_ptr[2 * i] = 1.0;
- scale_factor_ptr[2 * i + 1] = 1.0;
- for (size_t j = 0; j < processors_.size(); ++j) {
- if (!(*(processors_[j].get()))(mat)) {
- FDERROR << "Failed to process image:" << i << " in "
- << processors_[j]->Name() << "." << std::endl;
- return false;
- }
- if (processors_[j]->Name().find("Resize") != std::string::npos) {
- scale_factor_ptr[2 * i] = mat->Height() * 1.0 / origin_h;
- scale_factor_ptr[2 * i + 1] = mat->Width() * 1.0 / origin_w;
- }
- }
- if (mat->Height() > max_hw[0]) {
- max_hw[0] = mat->Height();
- }
- if (mat->Width() > max_hw[1]) {
- max_hw[1] = mat->Width();
- }
- im_shape_ptr[2 * i] = max_hw[0];
- im_shape_ptr[2 * i + 1] = max_hw[1];
- }
- // if the size of image less than max_hw, pad to max_hw
- for (size_t i = 0; i < image_batch->mats->size(); ++i) {
- FDMat *mat = &(image_batch->mats->at(i));
- if (mat->Height() < max_hw[0] || mat->Width() < max_hw[1]) {
- pad_op_->SetWidthHeight(max_hw[1], max_hw[0]);
- (*pad_op_)(mat);
- }
- }
- // Get the NCHW tensor
- FDTensor *tensor = image_batch->Tensor();
- (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
- tensor->Data(), tensor->device,
- tensor->device_id);
- return true;
- }
- void PaddleDetPreprocessor::DisableNormalize() {
- this->disable_normalize_ = true;
- // the DisableNormalize function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- void PaddleDetPreprocessor::DisablePermute() {
- this->disable_permute_ = true;
- // the DisablePermute function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|