| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/perception/paddle3d/petr/postprocessor.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace perception {
- PetrPostprocessor::PetrPostprocessor() {}
- bool PetrPostprocessor::Run(const std::vector<FDTensor> &tensors,
- std::vector<PerceptionResult> *results) {
- results->resize(1);
- (*results)[0].Clear();
- (*results)[0].Reserve(tensors[0].shape[0]);
- if (tensors[0].dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- const float *data_0 = reinterpret_cast<const float *>(tensors[0].Data());
- auto result = &(*results)[0];
- for (int i = 0; i < tensors[0].shape[0] * tensors[0].shape[1]; i += 9) {
- // item 1 ~ 3 : box3d w, h, l
- // item 4 ~ 6 : box3d bottom center x, y, z
- // item 7 : box3d yaw angle
- // item 8 ~ 9 : speed x,y
- std::vector<float> vec(data_0 + i, data_0 + i + 9);
- result->boxes.emplace_back(
- std::array<float, 7>{0, 0, 0, 0, vec[0], vec[1], vec[2]});
- result->center.emplace_back(std::array<float, 3>{vec[3], vec[4], vec[5]});
- result->yaw_angle.push_back(vec[6]);
- result->velocity.push_back(std::array<float, 3>{vec[7], vec[8]});
- }
- const float *data_1 = reinterpret_cast<const float *>(tensors[1].Data());
- for (int i = 0; i < tensors[1].shape[0]; i += 1) {
- std::vector<float> vec(data_1 + i, data_1 + i + 1);
- result->scores.push_back(vec[0]);
- }
- const long long *data_2 =
- reinterpret_cast<const long long *>(tensors[2].Data());
- for (int i = 0; i < tensors[2].shape[0]; i++) {
- std::vector<long long> vec(data_2 + i, data_2 + i + 1);
- result->label_ids.push_back(vec[0]);
- }
- result->valid.push_back(true); // 0 scores
- result->valid.push_back(true); // 1 label_ids
- result->valid.push_back(true); // 2 boxes
- result->valid.push_back(true); // 3 center
- result->valid.push_back(false); // 4 observation_angle
- result->valid.push_back(true); // 5 yaw_angle
- result->valid.push_back(true); // 6 velocity
- return true;
- }
- } // namespace perception
- } // namespace vision
- } // namespace ultra_infer
|