| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- from PIL import Image, ImageDraw, ImageFont
- from pathlib import Path
- import numpy as np
- from ....utils.fonts import PINGFANG_FONT_FILE_PATH
- from ...base import BaseTransform
- from ...base.predictor.io.writers import ImageWriter
- from .keys import ClsKeys as K
- from ....utils import logging
- __all__ = ["Topk", "NormalizeFeatures", "PrintResult", "SaveClsResults"]
- def _parse_class_id_map(class_ids):
- """ parse class id to label map file """
- if class_ids is None:
- return None
- class_id_map = {id: str(lb) for id, lb in enumerate(class_ids)}
- return class_id_map
- class Topk(BaseTransform):
- """ Topk Transform """
- def __init__(self, topk, class_ids=None):
- super().__init__()
- assert isinstance(topk, (int, ))
- self.topk = topk
- self.class_id_map = _parse_class_id_map(class_ids)
- def apply(self, data):
- """ apply """
- x = data[K.CLS_PRED]
- class_id_map = self.class_id_map
- y = []
- index = x.argsort(axis=0)[-self.topk:][::-1].astype("int32")
- clas_id_list = []
- score_list = []
- label_name_list = []
- for i in index:
- clas_id_list.append(i.item())
- score_list.append(x[i].item())
- if class_id_map is not None:
- label_name_list.append(class_id_map[i.item()])
- result = {
- "class_ids": clas_id_list,
- "scores": np.around(
- score_list, decimals=5).tolist()
- }
- if label_name_list is not None:
- result["label_names"] = label_name_list
- y.append(result)
- data[K.CLS_RESULT] = y
- return data
- @classmethod
- def get_input_keys(cls):
- """ get input keys """
- return [K.IM_PATH, K.CLS_PRED]
- @classmethod
- def get_output_keys(cls):
- """ get output keys """
- return [K.CLS_RESULT]
- class NormalizeFeatures(BaseTransform):
- """ Normalize Features Transform """
- def apply(self, data):
- """ apply """
- x = data[K.CLS_PRED]
- feas_norm = np.sqrt(np.sum(np.square(x), axis=0, keepdims=True))
- x = np.divide(x, feas_norm)
- data[K.CLS_RESULT] = x
- return data
- @classmethod
- def get_input_keys(cls):
- """ get input keys """
- return [K.IM_PATH, K.CLS_PRED]
- @classmethod
- def get_output_keys(cls):
- """ get output keys """
- return [K.CLS_RESULT]
- class PrintResult(BaseTransform):
- """ Print Result Transform """
- def apply(self, data):
- """ apply """
- logging.info("The prediction result is:")
- logging.info(data[K.CLS_RESULT])
- return data
- @classmethod
- def get_input_keys(cls):
- """ get input keys """
- return [K.CLS_RESULT]
- @classmethod
- def get_output_keys(cls):
- """ get output keys """
- return []
- class SaveClsResults(BaseTransform):
- def __init__(self, save_dir, class_ids=None):
- super().__init__()
- self.save_dir = save_dir
- self.class_id_map = _parse_class_id_map(class_ids)
- self._writer = ImageWriter(backend='pillow')
- def _get_colormap(self, rgb=False):
- """
- Get colormap
- """
- color_list = np.array([
- 0xFF, 0x00, 0x00, 0xCC, 0xFF, 0x00, 0x00, 0xFF, 0x66, 0x00, 0x66,
- 0xFF, 0xCC, 0x00, 0xFF, 0xFF, 0x4D, 0x00, 0x80, 0xff, 0x00, 0x00,
- 0xFF, 0xB2, 0x00, 0x1A, 0xFF, 0xFF, 0x00, 0xE5, 0xFF, 0x99, 0x00,
- 0x33, 0xFF, 0x00, 0x00, 0xFF, 0xFF, 0x33, 0x00, 0xFF, 0xff, 0x00,
- 0x99, 0xFF, 0xE5, 0x00, 0x00, 0xFF, 0x1A, 0x00, 0xB2, 0xFF, 0x80,
- 0x00, 0xFF, 0xFF, 0x00, 0x4D
- ]).astype(np.float32)
- color_list = (color_list.reshape((-1, 3)))
- if not rgb:
- color_list = color_list[:, ::-1]
- return color_list.astype('int32')
- def _get_font_colormap(self, color_index):
- """
- Get font colormap
- """
- dark = np.array([0x14, 0x0E, 0x35])
- light = np.array([0xFF, 0xFF, 0xFF])
- light_indexs = [0, 3, 4, 8, 9, 13, 14, 18, 19]
- if color_index in light_indexs:
- return light.astype('int32')
- else:
- return dark.astype('int32')
- def apply(self, data):
- """ Draw label on image """
- ori_path = data[K.IM_PATH]
- pred = data[K.CLS_PRED]
- index = pred.argsort(axis=0)[-1].astype("int32")
- score = pred[index].item()
- label = self.class_id_map[int(index)] if self.class_id_map else ""
- label_str = f"{label} {score:.2f}"
- file_name = os.path.basename(ori_path)
- save_path = os.path.join(self.save_dir, file_name)
- image = Image.open(ori_path)
- image = image.convert('RGB')
- image_size = image.size
- draw = ImageDraw.Draw(image)
- min_font_size = int(image_size[0] * 0.02)
- max_font_size = int(image_size[0] * 0.05)
- for font_size in range(max_font_size, min_font_size - 1, -1):
- font = ImageFont.truetype(
- PINGFANG_FONT_FILE_PATH, font_size, encoding="utf-8")
- text_width_tmp, text_height_tmp = draw.textsize(label_str, font)
- if text_width_tmp <= image_size[0]:
- break
- else:
- font = ImageFont.truetype(PINGFANG_FONT_FILE_PATH,
- min_font_size)
- color_list = self._get_colormap(rgb=True)
- color = tuple(color_list[0])
- font_color = tuple(self._get_font_colormap(3))
- text_width, text_height = draw.textsize(label_str, font)
- rect_left = 3
- rect_top = 3
- rect_right = rect_left + text_width + 3
- rect_bottom = rect_top + text_height + 6
- draw.rectangle(
- [(rect_left, rect_top), (rect_right, rect_bottom)], fill=color)
- text_x = rect_left + 3
- text_y = rect_top
- draw.text((text_x, text_y), label_str, fill=font_color, font=font)
- self._write_image(save_path, image)
- return data
- def _write_image(self, path, image):
- """ write image """
- if os.path.exists(path):
- logging.warning(f"{path} already exists. Overwriting it.")
- self._writer.write(path, image)
- @classmethod
- def get_input_keys(cls):
- """ get input keys """
- return [K.IM_PATH, K.CLS_PRED]
- @classmethod
- def get_output_keys(cls):
- """ get output keys """
- return []
|