| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import glob
- from pathlib import Path
- import paddle
- from ..base import BaseTrainer, BaseTrainDeamon
- from ...utils.config import AttrDict
- from .model_list import MODELS
- class SegTrainer(BaseTrainer):
- """ Semantic Segmentation Model Trainer """
- entities = MODELS
- def build_deamon(self, config: AttrDict) -> "SegTrainDeamon":
- """build deamon thread for saving training outputs timely
- Args:
- config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
- Returns:
- SegTrainDeamon: the training deamon thread object for saving training outputs timely.
- """
- return SegTrainDeamon(config)
- def update_config(self):
- """update training config
- """
- self.pdx_config.update_dataset(self.global_config.dataset_dir,
- "SegDataset")
- if self.train_config.num_classes is not None:
- self.pdx_config.update_num_classes(self.train_config.num_classes)
- if self.train_config.pretrain_weight_path and self.train_config.pretrain_weight_path != "":
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path, is_backbone=True)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- if self.train_config.batch_size is not None:
- train_args["batch_size"] = self.train_config.batch_size
- if self.train_config.learning_rate is not None:
- train_args["learning_rate"] = self.train_config.learning_rate
- if self.train_config.epochs_iters is not None:
- train_args["epochs_iters"] = self.train_config.epochs_iters
- if self.train_config.resume_path is not None and self.train_config.resume_path != "":
- train_args["resume_path"] = self.train_config.resume_path
- if self.global_config.output is not None:
- train_args["save_dir"] = self.global_config.output
- if self.train_config.log_interval:
- train_args["log_iters"] = self.train_config.log_interval
- if self.train_config.eval_interval:
- train_args["do_eval"] = True
- train_args["save_interval"] = self.train_config.eval_interval
- return train_args
- class SegTrainDeamon(BaseTrainDeamon):
- """ SegTrainResultDemon """
- last_k = 1
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- def get_the_pdparams_suffix(self):
- """ get the suffix of pdparams file """
- return "pdparams"
- def get_the_pdema_suffix(self):
- """ get the suffix of pdema file """
- return "pdema"
- def get_the_pdopt_suffix(self):
- """ get the suffix of pdopt file """
- return "pdopt"
- def get_the_pdstates_suffix(self):
- """ get the suffix of pdstates file """
- return "pdstates"
- def get_ith_ckp_prefix(self, epoch_id):
- """ get the prefix of the epoch_id checkpoint file """
- return f"iter_{epoch_id}/model"
- def get_best_ckp_prefix(self):
- """ get the prefix of the best checkpoint file """
- return "best_model/model"
- def get_score(self, pdstates_path):
- """ get the score by pdstates file """
- if not Path(pdstates_path).exists():
- return 0
- return paddle.load(pdstates_path)["mIoU"]
- def get_epoch_id_by_pdparams_prefix(self, pdparams_dir):
- """ get the epoch_id by pdparams file """
- return int(pdparams_dir.parent.name.split("_")[-1])
- def update_result(self, result, train_output):
- """ update every result """
- train_output = Path(train_output).resolve()
- config_path = train_output.joinpath("config.yaml").resolve()
- if not config_path.exists():
- return result
- model_name = result["model_name"]
- if model_name in self.config_recorder and self.config_recorder[
- model_name] != config_path:
- result["models"] = self.init_model_pkg()
- result["config"] = config_path
- self.config_recorder[model_name] = config_path
- result["visualdl_log"] = self.update_vdl_log(train_output)
- result["label_dict"] = self.update_label_dict(train_output)
- model = self.get_model(result["model_name"], config_path)
- params_path_list = list(
- train_output.glob(".".join([
- self.get_ith_ckp_prefix("[0-9]*"), self.get_the_pdparams_suffix(
- )
- ])))
- iter_ids = []
- for params_path in params_path_list:
- iter_id = self.get_epoch_id_by_pdparams_prefix(params_path)
- iter_ids.append(iter_id)
- iter_ids.sort()
- # TODO(gaotingquan): how to avoid that the latest ckp files is being saved
- # epoch_ids = epoch_ids[:-1]
- for i in range(1, self.last_k + 1):
- if len(iter_ids) < i:
- break
- self.update_models(result, model, train_output, f"last_{i}",
- self.get_ith_ckp_prefix(iter_ids[-i]))
- self.update_models(result, model, train_output, "best",
- self.get_best_ckp_prefix())
- return result
- def update_models(self, result, model, train_output, model_key, ckp_prefix):
- """ update info of the models to be saved """
- pdparams = train_output.joinpath(".".join(
- [ckp_prefix, self.get_the_pdparams_suffix()]))
- if pdparams.exists():
- recorder_key = f"{train_output.name}_{model_key}"
- if model_key != "best" and recorder_key in self.model_recorder and self.model_recorder[
- recorder_key] == pdparams:
- return
- self.model_recorder[recorder_key] = pdparams
- pdema = ""
- pdema_suffix = self.get_the_pdema_suffix()
- if pdema_suffix:
- pdema = pdparams.parents[1].joinpath(".".join(
- [ckp_prefix, pdema_suffix]))
- if not pdema.exists():
- pdema = ""
- pdopt = ""
- pdopt_suffix = self.get_the_pdopt_suffix()
- if pdopt_suffix:
- pdopt = pdparams.parents[1].joinpath(".".join(
- [ckp_prefix, pdopt_suffix]))
- if not pdopt.exists():
- pdopt = ""
- pdstates = ""
- pdstates_suffix = self.get_the_pdstates_suffix()
- if pdstates_suffix:
- pdstates = pdparams.parents[1].joinpath(".".join(
- [ckp_prefix, pdstates_suffix]))
- if not pdstates.exists():
- pdstates = ""
- score = self.get_score(Path(pdstates).resolve().as_posix())
- result["models"][model_key] = {
- "score": score,
- "pdparams": pdparams,
- "pdema": pdema,
- "pdopt": pdopt,
- "pdstates": pdstates
- }
- self.update_inference_model(model, pdparams,
- train_output.joinpath(f"{ckp_prefix}"),
- result["models"][model_key])
|