segmenter.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import os.path as osp
  16. import numpy as np
  17. from collections import OrderedDict
  18. import paddle
  19. import paddle.nn.functional as F
  20. from paddle.static import InputSpec
  21. import paddleseg
  22. import paddlex
  23. from paddlex.cv.transforms import arrange_transforms
  24. from paddlex.utils import get_single_card_bs
  25. import paddlex.utils.logging as logging
  26. from .base import BaseModel
  27. from .utils import seg_metrics as metrics
  28. from paddlex.utils.checkpoint import seg_pretrain_weights_dict
  29. from paddlex.cv.transforms import Decode
  30. __all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2"]
  31. class BaseSegmenter(BaseModel):
  32. def __init__(self,
  33. model_name,
  34. num_classes=2,
  35. use_mixed_loss=False,
  36. **params):
  37. self.init_params = locals()
  38. super(BaseSegmenter, self).__init__('segmenter')
  39. if not hasattr(paddleseg.models, model_name):
  40. raise Exception("ERROR: There's no model named {}.".format(
  41. model_name))
  42. self.model_name = model_name
  43. self.num_classes = num_classes
  44. self.use_mixed_loss = use_mixed_loss
  45. self.losses = None
  46. self.labels = None
  47. self.net = self.build_net(**params)
  48. def build_net(self, **params):
  49. # TODO: when using paddle.utils.unique_name.guard,
  50. # DeepLabv3p and HRNet will raise a error
  51. net = paddleseg.models.__dict__[self.model_name](
  52. num_classes=self.num_classes, **params)
  53. return net
  54. def get_test_inputs(self, image_shape):
  55. input_spec = [
  56. InputSpec(
  57. shape=[None, 3] + image_shape, name='image', dtype='float32')
  58. ]
  59. return input_spec
  60. def run(self, net, inputs, mode):
  61. net_out = net(inputs[0])
  62. logit = net_out[0]
  63. outputs = OrderedDict()
  64. if mode == 'test':
  65. origin_shape = inputs[1]
  66. score_map = self._postprocess(
  67. logit, origin_shape, transforms=inputs[2])
  68. label_map = paddle.argmax(
  69. score_map, axis=1, keepdim=True, dtype='int32')
  70. score_map = paddle.max(score_map, axis=1, keepdim=True)
  71. score_map = paddle.squeeze(score_map)
  72. label_map = paddle.squeeze(label_map)
  73. outputs = {'label_map': label_map, 'score_map': score_map}
  74. if mode == 'eval':
  75. pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
  76. label = inputs[1]
  77. origin_shape = [label.shape[-2:]]
  78. # TODO: 替换cv2后postprocess移出run
  79. pred = self._postprocess(pred, origin_shape, transforms=inputs[2])
  80. intersect_area, pred_area, label_area = metrics.calculate_area(
  81. pred, label, self.num_classes)
  82. outputs['intersect_area'] = intersect_area
  83. outputs['pred_area'] = pred_area
  84. outputs['label_area'] = label_area
  85. if mode == 'train':
  86. loss_list = metrics.loss_computation(
  87. logits_list=net_out, labels=inputs[1], losses=self.losses)
  88. loss = sum(loss_list)
  89. outputs['loss'] = loss
  90. return outputs
  91. def default_loss(self):
  92. if isinstance(self.use_mixed_loss, bool):
  93. if self.use_mixed_loss:
  94. losses = [
  95. paddleseg.models.CrossEntropyLoss(),
  96. paddleseg.models.LovaszSoftmaxLoss()
  97. ]
  98. coef = [.8, .2]
  99. loss_type = [
  100. paddleseg.models.MixedLoss(
  101. losses=losses, coef=coef),
  102. ]
  103. else:
  104. loss_type = [paddleseg.models.CrossEntropyLoss()]
  105. else:
  106. losses, coef = list(zip(*self.use_mixed_loss))
  107. if not set(losses).issubset(
  108. ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
  109. raise ValueError(
  110. "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
  111. )
  112. losses = [getattr(paddleseg.models, loss)() for loss in losses]
  113. loss_type = [
  114. paddleseg.models.MixedLoss(
  115. losses=losses, coef=list(coef))
  116. ]
  117. if self.model_name == 'FastSCNN':
  118. loss_type *= 2
  119. loss_coef = [1.0, 0.4]
  120. elif self.model_name == 'BiSeNetV2':
  121. loss_type *= 5
  122. loss_coef = [1.0] * 5
  123. else:
  124. loss_coef = [1.0]
  125. losses = {'types': loss_type, 'coef': loss_coef}
  126. return losses
  127. def default_optimizer(self,
  128. parameters,
  129. learning_rate,
  130. num_epochs,
  131. num_steps_each_epoch,
  132. lr_decay_power=0.9):
  133. decay_step = num_epochs * num_steps_each_epoch
  134. lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
  135. learning_rate, decay_step, end_lr=0, power=lr_decay_power)
  136. optimizer = paddle.optimizer.Momentum(
  137. learning_rate=lr_scheduler,
  138. parameters=parameters,
  139. momentum=0.9,
  140. weight_decay=4e-5)
  141. return optimizer
  142. def train(self,
  143. num_epochs,
  144. train_dataset,
  145. train_batch_size=2,
  146. eval_dataset=None,
  147. optimizer=None,
  148. save_interval_epochs=1,
  149. log_interval_steps=2,
  150. save_dir='output',
  151. pretrain_weights='CITYSCAPES',
  152. learning_rate=0.01,
  153. lr_decay_power=0.9,
  154. early_stop=False,
  155. early_stop_patience=5,
  156. use_vdl=True):
  157. """
  158. Train the model.
  159. Args:
  160. num_epochs(int): The number of epochs.
  161. train_dataset(paddlex.dataset): Training dataset.
  162. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
  163. eval_dataset(paddlex.dataset, optional):
  164. Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
  165. optimizer(paddle.optimizer.Optimizer or None, optional):
  166. Optimizer used in training. If None, a default optimizer is used. Defaults to None.
  167. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  168. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  169. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  170. pretrain_weights(str or None, optional):
  171. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  172. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  173. lr_decay_power(float, optional): Learning decay power. Defaults to .9.
  174. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  175. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  176. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  177. """
  178. self.labels = train_dataset.labels
  179. if self.losses is None:
  180. self.losses = self.default_loss()
  181. if optimizer is None:
  182. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  183. self.optimizer = self.default_optimizer(
  184. self.net.parameters(), learning_rate, num_epochs,
  185. num_steps_each_epoch, lr_decay_power)
  186. else:
  187. self.optimizer = optimizer
  188. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  189. if pretrain_weights not in seg_pretrain_weights_dict[
  190. self.model_name]:
  191. logging.warning(
  192. "Path of pretrain_weights('{}') does not exist!".format(
  193. pretrain_weights))
  194. logging.warning("Pretrain_weights is forcibly set to '{}'. "
  195. "If don't want to use pretrain weights, "
  196. "set pretrain_weights to be None.".format(
  197. seg_pretrain_weights_dict[self.model_name][
  198. 0]))
  199. pretrain_weights = seg_pretrain_weights_dict[self.model_name][
  200. 0]
  201. pretrained_dir = osp.join(save_dir, 'pretrain')
  202. self.net_initialize(
  203. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  204. self.train_loop(
  205. num_epochs=num_epochs,
  206. train_dataset=train_dataset,
  207. train_batch_size=train_batch_size,
  208. eval_dataset=eval_dataset,
  209. save_interval_epochs=save_interval_epochs,
  210. log_interval_steps=log_interval_steps,
  211. save_dir=save_dir,
  212. early_stop=early_stop,
  213. early_stop_patience=early_stop_patience,
  214. use_vdl=use_vdl)
  215. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  216. """
  217. Evaluate the model.
  218. Args:
  219. eval_dataset(paddlex.dataset): Evaluation dataset.
  220. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  221. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  222. Returns:
  223. collections.OrderedDict with key-value pairs:
  224. {"miou": `mean intersection over union`,
  225. "category_iou": `category-wise mean intersection over union`,
  226. "oacc": `overall accuracy`,
  227. "category_acc": `category-wise accuracy`,
  228. "kappa": ` kappa coefficient`,
  229. "category_F1-score": `F1 score`}.
  230. """
  231. arrange_transforms(
  232. model_type=self.model_type,
  233. transforms=eval_dataset.transforms,
  234. mode='eval')
  235. self.net.eval()
  236. nranks = paddle.distributed.get_world_size()
  237. local_rank = paddle.distributed.get_rank()
  238. if nranks > 1:
  239. # Initialize parallel environment if not done.
  240. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  241. ):
  242. paddle.distributed.init_parallel_env()
  243. batch_size_each_card = get_single_card_bs(batch_size)
  244. if batch_size_each_card > 1:
  245. batch_size_each_card = 1
  246. batch_size = batch_size_each_card * paddlex.env_info['num']
  247. logging.warning(
  248. "Segmenter only supports batch_size=1 for each gpu/cpu card " \
  249. "during evaluation, so batch_size " \
  250. "is forcibly set to {}.".format(batch_size))
  251. self.eval_data_loader = self.build_data_loader(
  252. eval_dataset, batch_size=batch_size, mode='eval')
  253. intersect_area_all = 0
  254. pred_area_all = 0
  255. label_area_all = 0
  256. logging.info(
  257. "Start to evaluate(total_samples={}, total_steps={})...".format(
  258. eval_dataset.num_samples,
  259. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  260. with paddle.no_grad():
  261. for step, data in enumerate(self.eval_data_loader):
  262. data.append(eval_dataset.transforms.transforms)
  263. outputs = self.run(self.net, data, 'eval')
  264. pred_area = outputs['pred_area']
  265. label_area = outputs['label_area']
  266. intersect_area = outputs['intersect_area']
  267. # Gather from all ranks
  268. if nranks > 1:
  269. intersect_area_list = []
  270. pred_area_list = []
  271. label_area_list = []
  272. paddle.distributed.all_gather(intersect_area_list,
  273. intersect_area)
  274. paddle.distributed.all_gather(pred_area_list, pred_area)
  275. paddle.distributed.all_gather(label_area_list, label_area)
  276. # Some image has been evaluated and should be eliminated in last iter
  277. if (step + 1) * nranks > len(eval_dataset):
  278. valid = len(eval_dataset) - step * nranks
  279. intersect_area_list = intersect_area_list[:valid]
  280. pred_area_list = pred_area_list[:valid]
  281. label_area_list = label_area_list[:valid]
  282. for i in range(len(intersect_area_list)):
  283. intersect_area_all = intersect_area_all + intersect_area_list[
  284. i]
  285. pred_area_all = pred_area_all + pred_area_list[i]
  286. label_area_all = label_area_all + label_area_list[i]
  287. else:
  288. intersect_area_all = intersect_area_all + intersect_area
  289. pred_area_all = pred_area_all + pred_area
  290. label_area_all = label_area_all + label_area
  291. class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
  292. label_area_all)
  293. # TODO 确认是按oacc还是macc
  294. class_acc, oacc = metrics.accuracy(intersect_area_all, pred_area_all)
  295. kappa = metrics.kappa(intersect_area_all, pred_area_all,
  296. label_area_all)
  297. category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
  298. label_area_all)
  299. eval_metrics = OrderedDict(
  300. zip([
  301. 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
  302. 'category_F1-score'
  303. ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
  304. return eval_metrics
  305. def predict(self, img_file, transforms=None):
  306. """
  307. Do inference.
  308. Args:
  309. Args:
  310. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  311. Image path or decoded image data in a BGR format, which also could constitute a list,
  312. meaning all images to be predicted as a mini-batch.
  313. transforms(paddlex.transforms.Compose or None, optional):
  314. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  315. Returns:
  316. If img_file is a string or np.array, the result is a dict with key-value pairs:
  317. {"label map": `label map`, "score_map": `score map`}.
  318. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  319. label_map(np.ndarray): the predicted label map
  320. score_map(np.ndarray): the prediction score map
  321. """
  322. if transforms is None and not hasattr(self, 'test_transforms'):
  323. raise Exception("transforms need to be defined, now is None.")
  324. if transforms is None:
  325. transforms = self.test_transforms
  326. if isinstance(img_file, (str, np.ndarray)):
  327. images = [img_file]
  328. else:
  329. images = img_file
  330. batch_im, batch_origin_shape = self._preprocess(images, transforms,
  331. self.model_type)
  332. self.net.eval()
  333. data = (batch_im, batch_origin_shape, transforms.transforms)
  334. outputs = self.run(self.net, data, 'test')
  335. label_map = outputs['label_map']
  336. label_map = label_map.numpy().astype('uint8')
  337. score_map = outputs['score_map']
  338. score_map = score_map.numpy().astype('float32')
  339. return {'label_map': label_map, 'score_map': score_map}
  340. def _preprocess(self, images, transforms, model_type):
  341. arrange_transforms(
  342. model_type=model_type, transforms=transforms, mode='test')
  343. batch_im = list()
  344. batch_ori_shape = list()
  345. for im in images:
  346. sample = {'image': im}
  347. if isinstance(sample['image'], str):
  348. sample = Decode(to_rgb=False)(sample)
  349. ori_shape = sample['image'].shape[:2]
  350. im = transforms(sample)[0]
  351. batch_im.append(im)
  352. batch_ori_shape.append(ori_shape)
  353. batch_im = paddle.to_tensor(batch_im)
  354. return batch_im, batch_ori_shape
  355. @staticmethod
  356. def get_transforms_shape_info(batch_ori_shape, transforms):
  357. batch_restore_list = list()
  358. for ori_shape in batch_ori_shape:
  359. restore_list = list()
  360. h, w = ori_shape[0], ori_shape[1]
  361. for op in transforms:
  362. if op.__class__.__name__ in ['Resize', 'ResizeByShort']:
  363. restore_list.append(('resize', (h, w)))
  364. h, w = op.target_size
  365. if op.__class__.__name__ in ['Padding']:
  366. restore_list.append(('padding', (h, w)))
  367. h, w = op.target_size
  368. batch_restore_list.append(restore_list)
  369. return batch_restore_list
  370. def _postprocess(self, batch_pred, batch_origin_shape, transforms):
  371. batch_restore_list = BaseSegmenter.get_transforms_shape_info(
  372. batch_origin_shape, transforms)
  373. results = list()
  374. for pred, restore_list in zip(batch_pred, batch_restore_list):
  375. pred = paddle.unsqueeze(pred, axis=0)
  376. for item in restore_list[::-1]:
  377. # TODO: 替换成cv2的interpolate(部署阶段无法使用paddle op)
  378. h, w = item[1][0], item[1][1]
  379. if item[0] == 'resize':
  380. pred = F.interpolate(pred, (h, w), mode='nearest')
  381. elif item[0] == 'padding':
  382. pred = pred[:, :, 0:h, 0:w]
  383. else:
  384. pass
  385. results.append(pred)
  386. batch_pred = paddle.concat(results, axis=0)
  387. return batch_pred
  388. class UNet(BaseSegmenter):
  389. def __init__(self,
  390. num_classes=2,
  391. use_mixed_loss=False,
  392. use_deconv=False,
  393. align_corners=False):
  394. params = {'use_deconv': use_deconv, 'align_corners': align_corners}
  395. super(UNet, self).__init__(
  396. model_name='UNet',
  397. num_classes=num_classes,
  398. use_mixed_loss=use_mixed_loss,
  399. **params)
  400. class DeepLabV3P(BaseSegmenter):
  401. def __init__(self,
  402. num_classes=2,
  403. backbone='ResNet50_vd',
  404. use_mixed_loss=False,
  405. output_stride=8,
  406. backbone_indices=(0, 3),
  407. aspp_ratios=(1, 12, 24, 36),
  408. aspp_out_channels=256,
  409. align_corners=False):
  410. self.backbone_name = backbone
  411. if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
  412. raise ValueError(
  413. "backbone: {} is not supported. Please choose one of "
  414. "('ResNet50_vd', 'ResNet101_vd')".format(backbone))
  415. backbone = getattr(paddleseg.models, backbone)(
  416. output_stride=output_stride)
  417. params = {
  418. 'backbone': backbone,
  419. 'backbone_indices': backbone_indices,
  420. 'aspp_ratios': aspp_ratios,
  421. 'aspp_out_channels': aspp_out_channels,
  422. 'align_corners': align_corners
  423. }
  424. super(DeepLabV3P, self).__init__(
  425. model_name='DeepLabV3P',
  426. num_classes=num_classes,
  427. use_mixed_loss=use_mixed_loss,
  428. **params)
  429. class FastSCNN(BaseSegmenter):
  430. def __init__(self,
  431. num_classes=2,
  432. use_mixed_loss=False,
  433. align_corners=False):
  434. params = {'align_corners': align_corners}
  435. super(FastSCNN, self).__init__(
  436. model_name='FastSCNN',
  437. num_classes=num_classes,
  438. use_mixed_loss=use_mixed_loss,
  439. **params)
  440. class HRNet(BaseSegmenter):
  441. def __init__(self,
  442. num_classes=2,
  443. width=48,
  444. use_mixed_loss=False,
  445. align_corners=False):
  446. if width not in (18, 48):
  447. raise ValueError(
  448. "width={} is not supported, please choose from [18, 48]".
  449. format(width))
  450. self.backbone_name = 'HRNet_W{}'.format(width)
  451. backbone = getattr(paddleseg.models, self.backbone_name)(
  452. align_corners=align_corners)
  453. params = {'backbone': backbone, 'align_corners': align_corners}
  454. super(HRNet, self).__init__(
  455. model_name='FCN',
  456. num_classes=num_classes,
  457. use_mixed_loss=use_mixed_loss,
  458. **params)
  459. self.model_name = 'HRNet'
  460. class BiSeNetV2(BaseSegmenter):
  461. def __init__(self,
  462. num_classes=2,
  463. use_mixed_loss=False,
  464. align_corners=False):
  465. params = {'align_corners': align_corners}
  466. super(BiSeNetV2, self).__init__(
  467. model_name='BiSeNetV2',
  468. num_classes=num_classes,
  469. use_mixed_loss=use_mixed_loss,
  470. **params)