anomaly_detection.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any
  15. from fastapi import FastAPI
  16. from ...infra import utils as serving_utils
  17. from ...infra.config import AppConfig
  18. from ...infra.models import ResultResponse
  19. from ...schemas.anomaly_detection import INFER_ENDPOINT, InferRequest, InferResult
  20. from .._app import create_app, primary_operation
  21. def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> FastAPI:
  22. app, ctx = create_app(
  23. pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
  24. )
  25. @primary_operation(
  26. app,
  27. INFER_ENDPOINT,
  28. "infer",
  29. )
  30. async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
  31. pipeline = ctx.pipeline
  32. aiohttp_session = ctx.aiohttp_session
  33. file_bytes = await serving_utils.get_raw_bytes_async(
  34. request.image, aiohttp_session
  35. )
  36. image = serving_utils.image_bytes_to_array(file_bytes)
  37. result = (await pipeline.infer(image))[0]
  38. pred = result["pred"][0].tolist()
  39. size = [len(pred), len(pred[0])]
  40. label_map = [item for sublist in pred for item in sublist]
  41. if ctx.config.visualize:
  42. output_image_base64 = serving_utils.base64_encode(
  43. serving_utils.image_to_bytes(result.img["res"].convert("RGB"))
  44. )
  45. else:
  46. output_image_base64 = None
  47. return ResultResponse[InferResult](
  48. logId=serving_utils.generate_log_id(),
  49. result=InferResult(
  50. labelMap=label_map, size=size, image=output_image_base64
  51. ),
  52. )
  53. return app