evaluator.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from pathlib import Path
  16. from abc import ABC, abstractmethod
  17. from .build_model import build_model
  18. from ...utils.device import update_device_num, set_env_for_device
  19. from ...utils.misc import AutoRegisterABCMetaClass
  20. from ...utils.config import AttrDict
  21. from ...utils.logging import *
  22. def build_evaluater(config: AttrDict) -> "BaseEvaluator":
  23. """build model evaluater
  24. Args:
  25. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  26. Returns:
  27. BaseEvaluator: the evaluater, which is subclass of BaseEvaluator.
  28. """
  29. model_name = config.Global.model
  30. try:
  31. import feature_line_modules
  32. except ModuleNotFoundError:
  33. info(
  34. "The PaddleX FeaTure Line plugin is not installed, but continuing execution."
  35. )
  36. return BaseEvaluator.get(model_name)(config)
  37. class BaseEvaluator(ABC, metaclass=AutoRegisterABCMetaClass):
  38. """Base Model Evaluator"""
  39. __is_base = True
  40. def __init__(self, config):
  41. """Initialize the instance.
  42. Args:
  43. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  44. """
  45. super().__init__()
  46. self.global_config = config.Global
  47. self.eval_config = config.Evaluate
  48. config_path = self.get_config_path(self.eval_config.weight_path)
  49. if self.eval_config.get("basic_config_path", None):
  50. config_path = self.eval_config.get("basic_config_path", None)
  51. self.pdx_config, self.pdx_model = build_model(
  52. self.global_config.model, config_path=config_path
  53. )
  54. def get_config_path(self, weight_path):
  55. """
  56. get config path
  57. Args:
  58. weight_path (str): The path to the weight
  59. Returns:
  60. config_path (str): The path to the config
  61. """
  62. config_path = Path(weight_path).parent / "config.yaml"
  63. if not config_path.exists():
  64. config_path = config_path.parent.parent / "config.yaml"
  65. if not config_path.exists():
  66. warning(
  67. f"The config file (`{config_path}`) related to weight file (`{weight_path}`) does not exist. Using default instead."
  68. )
  69. config_path = None
  70. return config_path
  71. def check_return(self, metrics: dict) -> bool:
  72. """check evaluation metrics
  73. Args:
  74. metrics (dict): evaluation output metrics
  75. Returns:
  76. bool: whether the format of evaluation metrics is legal
  77. """
  78. if not isinstance(metrics, dict):
  79. return False
  80. for metric in metrics:
  81. val = metrics[metric]
  82. if not isinstance(val, (float, int)):
  83. return False
  84. return True
  85. def evaluate(self) -> dict:
  86. """execute model evaluating
  87. Returns:
  88. dict: the evaluation metrics
  89. """
  90. self.update_config()
  91. # self.dump_config()
  92. evaluate_result = self.pdx_model.evaluate(**self.get_eval_kwargs())
  93. assert (
  94. evaluate_result.returncode == 0
  95. ), f"Encountered an unexpected error({evaluate_result.returncode}) in \
  96. evaling!"
  97. metrics = evaluate_result.metrics
  98. assert self.check_return(
  99. metrics
  100. ), f"The return value({metrics}) of Evaluator.eval() is illegal!"
  101. return {"metrics": metrics}
  102. def dump_config(self, config_file_path=None):
  103. """dump the config
  104. Args:
  105. config_file_path (str, optional): the path to save dumped config.
  106. Defaults to None, means that save in `Global.output` as `config.yaml`.
  107. """
  108. if config_file_path is None:
  109. config_file_path = os.path.join(self.global_config.output, "config.yaml")
  110. self.pdx_config.dump(config_file_path)
  111. def get_device(self, using_device_number: int = None) -> str:
  112. """get device setting from config
  113. Args:
  114. using_device_number (int, optional): specify device number to use.
  115. Defaults to None, means that base on config setting.
  116. Returns:
  117. str: device setting, such as: `gpu:0,1`, `npu:0,1`, `cpu`.
  118. """
  119. set_env_for_device(self.global_config.device)
  120. if using_device_number:
  121. return update_device_num(self.global_config.device, using_device_number)
  122. return self.global_config.device
  123. @abstractmethod
  124. def update_config(self):
  125. """update evalution config"""
  126. raise NotImplementedError
  127. @abstractmethod
  128. def get_eval_kwargs(self):
  129. """get key-value arguments of model evalution function"""
  130. raise NotImplementedError