pipeline.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Tuple, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...models.object_detection.result import DetResult
  21. from ...utils.hpi import HPIConfig
  22. from ...utils.pp_option import PaddlePredictorOption
  23. from .._parallel import AutoParallelImageSimpleInferencePipeline
  24. from ..base import BasePipeline
  25. from ..components import CropByBoxes
  26. from .result import FormulaRecognitionResult
  27. class _FormulaRecognitionPipeline(BasePipeline):
  28. """Formula Recognition Pipeline"""
  29. def __init__(
  30. self,
  31. config: Dict,
  32. device: str = None,
  33. pp_option: PaddlePredictorOption = None,
  34. use_hpip: bool = False,
  35. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  36. ) -> None:
  37. """Initializes the formula recognition pipeline.
  38. Args:
  39. config (Dict): Configuration dictionary containing various settings.
  40. device (str, optional): Device to run the predictions on. Defaults to None.
  41. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  42. use_hpip (bool, optional): Whether to use the high-performance
  43. inference plugin (HPIP) by default. Defaults to False.
  44. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  45. The default high-performance inference configuration dictionary.
  46. Defaults to None.
  47. """
  48. super().__init__(
  49. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  50. )
  51. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  52. if self.use_doc_preprocessor:
  53. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  54. "DocPreprocessor",
  55. {
  56. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  57. },
  58. )
  59. self.doc_preprocessor_pipeline = self.create_pipeline(
  60. doc_preprocessor_config
  61. )
  62. self.use_layout_detection = config.get("use_layout_detection", True)
  63. if self.use_layout_detection:
  64. layout_det_config = config.get("SubModules", {}).get(
  65. "LayoutDetection",
  66. {"model_config_error": "config error for layout_det_model!"},
  67. )
  68. layout_kwargs = {}
  69. if (threshold := layout_det_config.get("threshold", None)) is not None:
  70. layout_kwargs["threshold"] = threshold
  71. if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
  72. layout_kwargs["layout_nms"] = layout_nms
  73. if (
  74. layout_unclip_ratio := layout_det_config.get(
  75. "layout_unclip_ratio", None
  76. )
  77. ) is not None:
  78. layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
  79. if (
  80. layout_merge_bboxes_mode := layout_det_config.get(
  81. "layout_merge_bboxes_mode", None
  82. )
  83. ) is not None:
  84. layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
  85. self.layout_det_model = self.create_model(
  86. layout_det_config, **layout_kwargs
  87. )
  88. formula_recognition_config = config.get("SubModules", {}).get(
  89. "FormulaRecognition",
  90. {"model_config_error": "config error for formula_rec_model!"},
  91. )
  92. self.formula_recognition_model = self.create_model(formula_recognition_config)
  93. self._crop_by_boxes = CropByBoxes()
  94. self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
  95. self.img_reader = ReadImage(format="BGR")
  96. def get_model_settings(
  97. self,
  98. use_doc_orientation_classify: Optional[bool],
  99. use_doc_unwarping: Optional[bool],
  100. use_layout_detection: Optional[bool],
  101. ) -> dict:
  102. """
  103. Get the model settings based on the provided parameters or default values.
  104. Args:
  105. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  106. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  107. use_layout_detection (Optional[bool]): Whether to use layout detection.
  108. Returns:
  109. dict: A dictionary containing the model settings.
  110. """
  111. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  112. use_doc_preprocessor = self.use_doc_preprocessor
  113. else:
  114. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  115. use_doc_preprocessor = True
  116. else:
  117. use_doc_preprocessor = False
  118. if use_layout_detection is None:
  119. use_layout_detection = self.use_layout_detection
  120. return dict(
  121. use_doc_preprocessor=use_doc_preprocessor,
  122. use_layout_detection=use_layout_detection,
  123. )
  124. def check_model_settings_valid(
  125. self, model_settings: Dict, layout_det_res: Union[DetResult, List[DetResult]]
  126. ) -> bool:
  127. """
  128. Check if the input parameters are valid based on the initialized models.
  129. Args:
  130. model_settings (Dict): A dictionary containing input parameters.
  131. layout_det_res (Union[DetResult, List[DetResult]]): The layout detection result(s).
  132. Returns:
  133. bool: True if all required models are initialized according to input parameters, False otherwise.
  134. """
  135. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  136. logging.error(
  137. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  138. )
  139. return False
  140. if model_settings["use_layout_detection"]:
  141. if layout_det_res is not None:
  142. logging.error(
  143. "The layout detection model has already been initialized, please set use_layout_detection=False"
  144. )
  145. return False
  146. if not self.use_layout_detection:
  147. logging.error(
  148. "Set use_layout_detection, but the models for layout detection are not initialized."
  149. )
  150. return False
  151. return True
  152. def predict(
  153. self,
  154. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  155. use_layout_detection: Optional[bool] = None,
  156. use_doc_orientation_classify: Optional[bool] = None,
  157. use_doc_unwarping: Optional[bool] = None,
  158. layout_det_res: Optional[Union[DetResult, List[DetResult]]] = None,
  159. layout_threshold: Optional[Union[float, dict]] = None,
  160. layout_nms: Optional[bool] = None,
  161. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  162. layout_merge_bboxes_mode: Optional[str] = None,
  163. **kwargs,
  164. ) -> FormulaRecognitionResult:
  165. """
  166. This function predicts the layout parsing result for the given input.
  167. Args:
  168. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) of pdf(s) to be processed.
  169. use_layout_detection (Optional[bool]): Whether to use layout detection.
  170. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  171. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  172. layout_det_res (Optional[Union[DetResult, List[DetResult]]]): The layout detection result(s).
  173. It will be used if it is not None and use_layout_detection is False.
  174. **kwargs: Additional keyword arguments.
  175. Returns:
  176. formulaRecognitionResult: The predicted formula recognition result.
  177. """
  178. model_settings = self.get_model_settings(
  179. use_doc_orientation_classify,
  180. use_doc_unwarping,
  181. use_layout_detection,
  182. )
  183. if not self.check_model_settings_valid(model_settings, layout_det_res):
  184. yield {"error": "the input params for model settings are invalid!"}
  185. external_layout_det_results = layout_det_res
  186. if external_layout_det_results is not None:
  187. if not isinstance(external_layout_det_results, list):
  188. external_layout_det_results = [external_layout_det_results]
  189. external_layout_det_results = iter(external_layout_det_results)
  190. for _, batch_data in enumerate(self.batch_sampler(input)):
  191. image_arrays = self.img_reader(batch_data.instances)
  192. if model_settings["use_doc_preprocessor"]:
  193. doc_preprocessor_results = list(
  194. self.doc_preprocessor_pipeline(
  195. image_arrays,
  196. use_doc_orientation_classify=use_doc_orientation_classify,
  197. use_doc_unwarping=use_doc_unwarping,
  198. )
  199. )
  200. else:
  201. doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
  202. doc_preprocessor_images = [
  203. item["output_img"] for item in doc_preprocessor_results
  204. ]
  205. formula_results = []
  206. if (
  207. not model_settings["use_layout_detection"]
  208. and external_layout_det_results is None
  209. ):
  210. layout_det_results = [{} for _ in doc_preprocessor_images]
  211. formula_rec_results = list(
  212. self.formula_recognition_model(doc_preprocessor_images)
  213. )
  214. for formula_rec_res in formula_rec_results:
  215. formula_results_for_img = []
  216. formula_rec_res["formula_region_id"] = 1
  217. formula_results_for_img.append(formula_rec_res)
  218. formula_results.append(formula_results_for_img)
  219. else:
  220. if model_settings["use_layout_detection"]:
  221. layout_det_results = list(
  222. self.layout_det_model(
  223. doc_preprocessor_images,
  224. threshold=layout_threshold,
  225. layout_nms=layout_nms,
  226. layout_unclip_ratio=layout_unclip_ratio,
  227. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  228. )
  229. )
  230. else:
  231. layout_det_results = []
  232. for _ in doc_preprocessor_images:
  233. try:
  234. layout_det_res = next(external_layout_det_results)
  235. except StopIteration:
  236. raise ValueError("No more layout det results")
  237. layout_det_results.append(layout_det_res)
  238. formula_crop_imgs = []
  239. formula_det_results = []
  240. chunk_indices = [0]
  241. for doc_preprocessor_image, layout_det_res in zip(
  242. doc_preprocessor_images, layout_det_results
  243. ):
  244. formula_region_id = 1
  245. for box_info in layout_det_res["boxes"]:
  246. if box_info["label"].lower() in ["formula"]:
  247. crop_img_info = self._crop_by_boxes(
  248. doc_preprocessor_image, [box_info]
  249. )
  250. crop_img_info = crop_img_info[0]
  251. formula_crop_imgs.append(crop_img_info["img"])
  252. res = {}
  253. res["formula_region_id"] = formula_region_id
  254. res["dt_polys"] = box_info["coordinate"]
  255. formula_det_results.append(res)
  256. formula_region_id += 1
  257. chunk_indices.append(len(formula_crop_imgs))
  258. formula_rec_results = list(
  259. self.formula_recognition_model(formula_crop_imgs)
  260. )
  261. for idx in range(len(chunk_indices) - 1):
  262. formula_det_results_for_idx = formula_det_results[
  263. chunk_indices[idx] : chunk_indices[idx + 1]
  264. ]
  265. formula_rec_results_for_idx = formula_rec_results[
  266. chunk_indices[idx] : chunk_indices[idx + 1]
  267. ]
  268. for formula_det_res, formula_rec_res in zip(
  269. formula_det_results_for_idx, formula_rec_results_for_idx
  270. ):
  271. formula_region_id = formula_det_res["formula_region_id"]
  272. dt_polys = formula_det_res["dt_polys"]
  273. formula_rec_res["formula_region_id"] = formula_region_id
  274. formula_rec_res["dt_polys"] = dt_polys
  275. formula_results.append(formula_rec_results_for_idx)
  276. for (
  277. input_path,
  278. page_index,
  279. layout_det_res,
  280. doc_preprocessor_res,
  281. formula_results_for_img,
  282. ) in zip(
  283. batch_data.input_paths,
  284. batch_data.page_indexes,
  285. layout_det_results,
  286. doc_preprocessor_results,
  287. formula_results,
  288. ):
  289. single_img_res = {
  290. "input_path": input_path,
  291. "page_index": page_index,
  292. "layout_det_res": layout_det_res,
  293. "doc_preprocessor_res": doc_preprocessor_res,
  294. "formula_res_list": formula_results_for_img,
  295. "model_settings": model_settings,
  296. }
  297. yield FormulaRecognitionResult(single_img_res)
  298. @pipeline_requires_extra("ocr")
  299. class FormulaRecognitionPipeline(AutoParallelImageSimpleInferencePipeline):
  300. entities = ["formula_recognition"]
  301. @property
  302. def _pipeline_cls(self):
  303. return _FormulaRecognitionPipeline
  304. def _get_batch_size(self, config):
  305. return config.get("batch_size", 1)