| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- from ....utils import logging
- from ...base.predictor.transforms import image_common
- from ...base import BasePredictor
- from .keys import TableRecKeys as K
- from . import transforms as T
- from ..model_list import MODELS
- class TableRecPredictor(BasePredictor):
- """TableRecPredictor"""
- entities = MODELS
- def __init__(
- self,
- model_name,
- model_dir,
- kernel_option,
- output,
- pre_transforms=None,
- post_transforms=None,
- table_max_len=488,
- ):
- self.table_max_len = table_max_len
- super().__init__(
- model_name=model_name,
- model_dir=model_dir,
- kernel_option=kernel_option,
- output=output,
- pre_transforms=pre_transforms,
- post_transforms=post_transforms,
- )
- @classmethod
- def get_input_keys(cls):
- """get input keys"""
- return [[K.IMAGE, K.ORI_IM_SIZE], [K.IM_PATH, K.ORI_IM_SIZE]]
- @classmethod
- def get_output_keys(cls):
- """get output keys"""
- return [K.STRUCTURE_PROB, K.LOC_PROB, K.SHAPE_LIST]
- def _run(self, batch_input):
- """run"""
- images = [data[K.IMAGE] for data in batch_input]
- input_ = np.stack(images, axis=0)
- if input_.ndim == 3:
- input_ = input_[:, np.newaxis]
- input_ = input_.astype(dtype=np.float32, copy=False)
- outputs = self._predictor.predict([input_])
- struc_probs = outputs[1]
- bbox_probs = outputs[0]
- for data in batch_input:
- data[K.SHAPE_LIST] = [data[K.ORI_IM_SIZE]]
- # In-place update
- pred = batch_input
- for dict_, struc_prob, bbox_prob in zip(pred, struc_probs, bbox_probs):
- dict_[K.STRUCTURE_PROB] = struc_prob[np.newaxis, :]
- dict_[K.LOC_PROB] = bbox_prob[np.newaxis, :]
- return pred
- def _get_pre_transforms_from_config(self):
- """_get_pre_transforms_from_config"""
- return [
- image_common.ReadImage(),
- image_common.ResizeByLong(target_long_edge=self.table_max_len),
- image_common.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
- ),
- image_common.Pad(target_size=self.table_max_len, val=0.0),
- image_common.ToCHWImage(),
- ]
- def _get_post_transforms_from_config(self):
- """get postprocess transforms"""
- post_transforms = [T.TableLabelDecode()]
- if not self.disable_save:
- post_transforms.append(T.SaveTableResults(self.output))
- return post_transforms
|