yolov3_qat.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压昆虫检测数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  8. train_transforms = T.Compose([
  9. T.MixupImage(mixup_epoch=250), T.RandomDistort(),
  10. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  11. T.RandomHorizontalFlip(), T.BatchRandomResize(
  12. target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
  13. interp='RANDOM'), T.Normalize(
  14. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  15. ])
  16. eval_transforms = T.Compose([
  17. T.Resize(
  18. 608, interp='CUBIC'), T.Normalize(
  19. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  20. ])
  21. # 定义训练和验证所用的数据集
  22. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/voc.py#L29
  23. train_dataset = pdx.datasets.VOCDetection(
  24. data_dir='insect_det',
  25. file_list='insect_det/train_list.txt',
  26. label_list='insect_det/labels.txt',
  27. transforms=train_transforms,
  28. shuffle=True)
  29. eval_dataset = pdx.datasets.VOCDetection(
  30. data_dir='insect_det',
  31. file_list='insect_det/val_list.txt',
  32. label_list='insect_det/labels.txt',
  33. transforms=eval_transforms,
  34. shuffle=False)
  35. # 加载模型
  36. model = pdx.load_model('output/yolov3_darknet53/best_model')
  37. # 在线量化
  38. model.quant_aware_train(
  39. num_epochs=50,
  40. train_dataset=train_dataset,
  41. train_batch_size=8,
  42. eval_dataset=eval_dataset,
  43. learning_rate=0.0001 / 8,
  44. warmup_steps=100,
  45. warmup_start_lr=0.0,
  46. save_interval_epochs=1,
  47. lr_decay_epochs=[30, 45],
  48. save_dir='output/yolov3_darknet53/quant',
  49. use_vdl=True)