| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压昆虫检测数据集
- dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
- train_transforms = T.Compose([
- T.MixupImage(mixup_epoch=250), T.RandomDistort(),
- T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
- T.RandomHorizontalFlip(), T.BatchRandomResize(
- target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
- interp='RANDOM'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- eval_transforms = T.Compose([
- T.Resize(
- 608, interp='CUBIC'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/voc.py#L29
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms,
- shuffle=False)
- # 加载模型
- model = pdx.load_model('output/yolov3_darknet53/best_model')
- # 在线量化
- model.quant_aware_train(
- num_epochs=50,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- learning_rate=0.0001 / 8,
- warmup_steps=100,
- warmup_start_lr=0.0,
- save_interval_epochs=1,
- lr_decay_epochs=[30, 45],
- save_dir='output/yolov3_darknet53/quant',
- use_vdl=True)
|