| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <iostream>
- #include <string>
- #include <vector>
- #include "include/paddlex/transforms.h"
- namespace PaddleX {
- std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
- {"NEAREST", cv::INTER_NEAREST},
- {"AREA", cv::INTER_AREA},
- {"CUBIC", cv::INTER_CUBIC},
- {"LANCZOS4", cv::INTER_LANCZOS4}};
- bool Normalize::Run(cv::Mat* im){
- for (int h = 0; h < im->rows; h++) {
- for (int w = 0; w < im->cols; w++) {
- im->at<cv::Vec3f>(h, w)[0] =
- (im->at<cv::Vec3f>(h, w)[0] / 255.0 - mean_[0]) / std_[0];
- im->at<cv::Vec3f>(h, w)[1] =
- (im->at<cv::Vec3f>(h, w)[1] / 255.0 - mean_[1]) / std_[1];
- im->at<cv::Vec3f>(h, w)[2] =
- (im->at<cv::Vec3f>(h, w)[2] / 255.0 - mean_[2]) / std_[2];
- }
- }
- return true;
- }
- bool CenterCrop::Run(cv::Mat* im) {
- int height = static_cast<int>(im->rows);
- int width = static_cast<int>(im->cols);
- if (height < height_ || width < width_) {
- std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
- return false;
- }
- int offset_x = static_cast<int>((width - width_) / 2);
- int offset_y = static_cast<int>((height - height_) / 2);
- cv::Rect crop_roi(offset_x, offset_y, width_, height_);
- *im = (*im)(crop_roi);
- return true;
- }
- float ResizeByShort::GenerateScale(const cv::Mat& im) {
- int origin_w = im.cols;
- int origin_h = im.rows;
- int im_size_max = std::max(origin_w, origin_h);
- int im_size_min = std::min(origin_w, origin_h);
- float scale =
- static_cast<float>(short_size_) / static_cast<float>(im_size_min);
- if (max_size_ > 0) {
- if (round(scale * im_size_max) > max_size_) {
- scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
- }
- }
- return scale;
- }
- bool ResizeByShort::Run(cv::Mat* im) {
- float scale = GenerateScale(*im);
- int width = static_cast<int>(scale * im->cols);
- int height = static_cast<int>(scale * im->rows);
- cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
- return true;
- }
- void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
- transforms_.clear();
- to_rgb_ = to_rgb;
- for (const auto& item : transforms_node) {
- std::string name = item.begin()->first.as<std::string>();
- std::cout << "trans name: " << name << std::endl;
- std::shared_ptr<Transform> transform = CreateTransform(name);
- transform->Init(item.begin()->second);
- transforms_.push_back(transform);
- }
- }
- std::shared_ptr<Transform> Transforms::CreateTransform(
- const std::string& transform_name) {
- if (transform_name == "Normalize") {
- return std::make_shared<Normalize>();
- } else if (transform_name == "CenterCrop") {
- return std::make_shared<CenterCrop>();
- } else if (transform_name == "ResizeByShort") {
- return std::make_shared<ResizeByShort>();
- } else {
- std::cerr << "There's unexpected transform(name='" << transform_name
- << "')." << std::endl;
- exit(-1);
- }
- }
- bool Transforms::Run(cv::Mat* im, Blob::Ptr blob) {
- // 按照transforms中预处理算子顺序处理图像
- if (to_rgb_) {
- cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
- }
- (*im).convertTo(*im, CV_32FC3);
- for (int i = 0; i < transforms_.size(); ++i) {
- if (!transforms_[i]->Run(im)) {
- std::cerr << "Apply transforms to image failed!" << std::endl;
- return false;
- }
- }
- // 将图像由NHWC转为NCHW格式
- // 同时转为连续的内存块存储到Blob
- SizeVector blobSize = blob->getTensorDesc().getDims();
- const size_t width = blobSize[3];
- const size_t height = blobSize[2];
- const size_t channels = blobSize[1];
- MemoryBlob::Ptr mblob = InferenceEngine::as<MemoryBlob>(blob);
- auto mblobHolder = mblob->wmap();
- float *blob_data = mblobHolder.as<float *>();
- for (size_t c = 0; c < channels; c++) {
- for (size_t h = 0; h < height; h++) {
- for (size_t w = 0; w < width; w++) {
- blob_data[c * width * height + h * width + w] =
- im->at<cv::Vec3f>(h, w)[c];
- }
- }
- }
- return true;
- }
- } // namespace PaddleX
|