pfld.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class PFLD(UltraInferModel):
  18. def __init__(
  19. self,
  20. model_file,
  21. params_file="",
  22. runtime_option=None,
  23. model_format=ModelFormat.ONNX,
  24. ):
  25. """Load a face alignment model exported by PFLD.
  26. :param model_file: (str)Path of model file, e.g pfld/pfld-106-v3.onnx
  27. :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  28. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  29. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model, default is ONNX
  30. """
  31. super(PFLD, self).__init__(runtime_option)
  32. assert (
  33. model_format == ModelFormat.ONNX
  34. ), "PFLD only support model format of ModelFormat.ONNX now."
  35. self._model = C.vision.facealign.PFLD(
  36. model_file, params_file, self._runtime_option, model_format
  37. )
  38. assert self.initialized, "PFLD initialize failed."
  39. def predict(self, input_image):
  40. """Detect an input image landmarks
  41. :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  42. :return: FaceAlignmentResult
  43. """
  44. return self._model.predict(input_image)
  45. @property
  46. def size(self):
  47. """
  48. Returns the preprocess image size, default (112, 112)
  49. """
  50. return self._model.size
  51. @size.setter
  52. def size(self, wh):
  53. """
  54. Set the preprocess image size, default (112, 112)
  55. """
  56. assert isinstance(
  57. wh, (list, tuple)
  58. ), "The value to set `size` must be type of tuple or list."
  59. assert (
  60. len(wh) == 2
  61. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  62. len(wh)
  63. )
  64. self._model.size = wh