| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class PFLD(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file="",
- runtime_option=None,
- model_format=ModelFormat.ONNX,
- ):
- """Load a face alignment model exported by PFLD.
- :param model_file: (str)Path of model file, e.g pfld/pfld-106-v3.onnx
- :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model, default is ONNX
- """
- super(PFLD, self).__init__(runtime_option)
- assert (
- model_format == ModelFormat.ONNX
- ), "PFLD only support model format of ModelFormat.ONNX now."
- self._model = C.vision.facealign.PFLD(
- model_file, params_file, self._runtime_option, model_format
- )
- assert self.initialized, "PFLD initialize failed."
- def predict(self, input_image):
- """Detect an input image landmarks
- :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :return: FaceAlignmentResult
- """
- return self._model.predict(input_image)
- @property
- def size(self):
- """
- Returns the preprocess image size, default (112, 112)
- """
- return self._model.size
- @size.setter
- def size(self, wh):
- """
- Set the preprocess image size, default (112, 112)
- """
- assert isinstance(
- wh, (list, tuple)
- ), "The value to set `size` must be type of tuple or list."
- assert (
- len(wh) == 2
- ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
- len(wh)
- )
- self._model.size = wh
|