| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class RetinaFace(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file="",
- runtime_option=None,
- model_format=ModelFormat.ONNX,
- ):
- """Load a RetinaFace model exported by RetinaFace.
- :param model_file: (str)Path of model file, e.g ./retinaface.onnx
- :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
- """
- # 调用基函数进行backend_option的初始化
- # 初始化后的option保存在self._runtime_option
- super(RetinaFace, self).__init__(runtime_option)
- self._model = C.vision.facedet.RetinaFace(
- model_file, params_file, self._runtime_option, model_format
- )
- # 通过self.initialized判断整个模型的初始化是否成功
- assert self.initialized, "RetinaFace initialize failed."
- def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3):
- """Detect the location and key points of human faces from an input image
- :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :param conf_threshold: confidence threashold for postprocessing, default is 0.7
- :param nms_iou_threshold: iou threashold for NMS, default is 0.3
- :return: FaceDetectionResult
- """
- return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
- # 一些跟模型有关的属性封装
- # 多数是预处理相关,可通过修改如model.size = [640, 480]改变预处理时resize的大小(前提是模型支持)
- @property
- def size(self):
- """
- Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
- """
- return self._model.size
- @property
- def variance(self):
- """
- Argument for image postprocessing step, variance in RetinaFace's prior-box(anchor) generate process, default (0.1, 0.2)
- """
- return self._model.variance
- @property
- def downsample_strides(self):
- """
- Argument for image postprocessing step, downsample strides (namely, steps) for RetinaFace to generate anchors, will take (8,16,32) as default values
- """
- return self._model.downsample_strides
- @property
- def min_sizes(self):
- """
- Argument for image postprocessing step, min sizes, width and height for each anchor, default min_sizes = [[16, 32], [64, 128], [256, 512]]
- """
- return self._model.min_sizes
- @property
- def landmarks_per_face(self):
- """
- Argument for image postprocessing step, landmarks_per_face, default 5 in RetinaFace
- """
- return self._model.landmarks_per_face
- @size.setter
- def size(self, wh):
- assert isinstance(
- wh, (list, tuple)
- ), "The value to set `size` must be type of tuple or list."
- assert (
- len(wh) == 2
- ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
- len(wh)
- )
- self._model.size = wh
- @variance.setter
- def variance(self, value):
- assert isinstance(
- value, (list, tuple)
- ), "The value to set `variance` must be type of tuple or list."
- assert (
- len(value) == 2
- ), "The value to set `variance` must contatins 2 elements".format(len(value))
- self._model.variance = value
- @downsample_strides.setter
- def downsample_strides(self, value):
- assert isinstance(
- value, list
- ), "The value to set `downsample_strides` must be type of list."
- self._model.downsample_strides = value
- @min_sizes.setter
- def min_sizes(self, value):
- assert isinstance(
- value, list
- ), "The value to set `min_sizes` must be type of list."
- self._model.min_sizes = value
- @landmarks_per_face.setter
- def landmarks_per_face(self, value):
- assert isinstance(
- value, int
- ), "The value to set `landmarks_per_face` must be type of int."
- self._model.landmarks_per_face = value
|